Econ. Environ. Geol. 2024; 57(5): 593-608

Published online October 29, 2024

https://doi.org/10.9719/EEG.2024.57.5.593

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Geochemical Approaches to Mineral Resources Exploration

Jaeguk Jo1,*, Bum Han Lee1, Chul-Ho Heo2

1Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
2Minerals Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)

Correspondence to : *jo@kigam.re.kr

Received: August 25, 2024; Revised: October 5, 2024; Accepted: October 7, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

As surface resources are continually developed and depleted, there is an increasing need to explore deeper ore bodies. Simultaneously, global demand for eco-friendly energy sources increases due to decarbonization policies, intensifying competition among nations to secure critical mineral resources. Geochemical exploration is based on the behavior of specific elements derived from mineral deposits and should be conducted with consideration of numerous geological variables. The characteristics of elemental concentration around ore bodies, which can be observed in media such as natural water, river sediments, soil, rock, vegetation, and geogas, provide clues for predicting the distribution of undiscovered ore bodies. For this reason, it is essential to identify the types of indicator elements that can be used for exploration depending on the mineralization type, and to establish a systematic geological exploration methodology based on the behavior of elements around mineralized ore bodies. Furthermore, applying Al technology to these geochemical characteristics would aid to exploration for critical mineral resources.

Keywords hidden ore body, mineral resources, exploration methodology, geochemistry, indicator elements

광물자원 탐사를 위한 지구화학적 접근

조재국1,* · 이범한1 · 허철호2

1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2한국지질자원연구원 광물자원연구본부

요 약

지속적인 개발로 인해 지표에 노출된 자원이 고갈됨에 따라 지하 깊은 곳에 존재하는 부존 광체를 탐사할 필요성이 커지고 있다. 동시에 탈탄소화 정책의 일환으로 친환경 에너지 자원에 대한 글로벌 수요가 증가하면서 희소 광물자원을 확보하기 위한 국가 간 경쟁이 심화되었다. 지구화학 탐사는 광상에서 유래된 특정 원소의 거동을 기반으로 하며, 많은 지질학적 변수를 고려해야 한다. 자연수, 하천 퇴적물, 토양, 암석, 식생, 지오가스 등 다양한 매개체를 통해 관찰되는 광체 주변의 지시원소 농집 특성은 미확인 광체의 분포를 예측하는 데 중요한 단서를 제공한다. 따라서, 광화작용 유형별 탐사에 활용될 수 있는 지시원소를 특정하고, 광체 주변에서의 원소 거동 특성에 기반한 체계적인 지구화학 탐사법 확립이 필요하다. 나아가 이러한 지구화학적 특성에 기반하여 AI 기술을 적용한다면, 향후 광물 자원탐사에 도움이 될 것이다.

주요어 자원탐사, 부존광체, 핵심광물, 지구화학, 지시원소, 탐사 방법론

Article

Review

Econ. Environ. Geol. 2024; 57(5): 593-608

Published online October 29, 2024 https://doi.org/10.9719/EEG.2024.57.5.593

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Geochemical Approaches to Mineral Resources Exploration

Jaeguk Jo1,*, Bum Han Lee1, Chul-Ho Heo2

1Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
2Minerals Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)

Correspondence to:*jo@kigam.re.kr

Received: August 25, 2024; Revised: October 5, 2024; Accepted: October 7, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

As surface resources are continually developed and depleted, there is an increasing need to explore deeper ore bodies. Simultaneously, global demand for eco-friendly energy sources increases due to decarbonization policies, intensifying competition among nations to secure critical mineral resources. Geochemical exploration is based on the behavior of specific elements derived from mineral deposits and should be conducted with consideration of numerous geological variables. The characteristics of elemental concentration around ore bodies, which can be observed in media such as natural water, river sediments, soil, rock, vegetation, and geogas, provide clues for predicting the distribution of undiscovered ore bodies. For this reason, it is essential to identify the types of indicator elements that can be used for exploration depending on the mineralization type, and to establish a systematic geological exploration methodology based on the behavior of elements around mineralized ore bodies. Furthermore, applying Al technology to these geochemical characteristics would aid to exploration for critical mineral resources.

Keywords hidden ore body, mineral resources, exploration methodology, geochemistry, indicator elements

광물자원 탐사를 위한 지구화학적 접근

조재국1,* · 이범한1 · 허철호2

1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2한국지질자원연구원 광물자원연구본부

Received: August 25, 2024; Revised: October 5, 2024; Accepted: October 7, 2024

요 약

지속적인 개발로 인해 지표에 노출된 자원이 고갈됨에 따라 지하 깊은 곳에 존재하는 부존 광체를 탐사할 필요성이 커지고 있다. 동시에 탈탄소화 정책의 일환으로 친환경 에너지 자원에 대한 글로벌 수요가 증가하면서 희소 광물자원을 확보하기 위한 국가 간 경쟁이 심화되었다. 지구화학 탐사는 광상에서 유래된 특정 원소의 거동을 기반으로 하며, 많은 지질학적 변수를 고려해야 한다. 자연수, 하천 퇴적물, 토양, 암석, 식생, 지오가스 등 다양한 매개체를 통해 관찰되는 광체 주변의 지시원소 농집 특성은 미확인 광체의 분포를 예측하는 데 중요한 단서를 제공한다. 따라서, 광화작용 유형별 탐사에 활용될 수 있는 지시원소를 특정하고, 광체 주변에서의 원소 거동 특성에 기반한 체계적인 지구화학 탐사법 확립이 필요하다. 나아가 이러한 지구화학적 특성에 기반하여 AI 기술을 적용한다면, 향후 광물 자원탐사에 도움이 될 것이다.

주요어 자원탐사, 부존광체, 핵심광물, 지구화학, 지시원소, 탐사 방법론

    Fig 1.

    Figure 1.Geogas exploration for the detection of pervasive feeble mineralization (revised from Rose et al., 1979). A) Contour map of target elements surrounding the orebody. B) Pervasive feeble mineralization of stockwork ore body.
    Economic and Environmental Geology 2024; 57: 593-608https://doi.org/10.9719/EEG.2024.57.5.593

    Fig 2.

    Figure 2.Comparison of target elements between crust (upper crusts, sedimentary rocks) and ore deposits (revised from Nishiyama, 1992; Bowell et al., 2020).
    Economic and Environmental Geology 2024; 57: 593-608https://doi.org/10.9719/EEG.2024.57.5.593

    Fig 3.

    Figure 3.Behavioral characteristics of elements influenced by subsurface fluids (revised from Rose et al., 1979). A) leaching of target ions through the behavior of groundwater. B) precipitation of target ions at the interface of saturated ground. C) absorption of target ions by vegetation. D) behavior of target ions from the orebody through groundwater and their accumulation by vegetation.
    Economic and Environmental Geology 2024; 57: 593-608https://doi.org/10.9719/EEG.2024.57.5.593

    Fig 4.

    Figure 4.Comparison of trace element concentrations between upper crusts and sedimentary rocks (A, B; Data revised from Teng et al., 2004; Wedepohl, 1995; McLennan, 2001).
    Economic and Environmental Geology 2024; 57: 593-608https://doi.org/10.9719/EEG.2024.57.5.593

    Fig 5.

    Figure 5.Relation between residual soil anomalies and Cu ore deposits (Rose et al., 1979).
    Economic and Environmental Geology 2024; 57: 593-608https://doi.org/10.9719/EEG.2024.57.5.593

    Table 1 . Indicator minerals and associated elements for geochemical exploration by deposit types.

    Ore deposits/mineralization typesIndicator mineralsAssociated elementsReferences
    Carbonatite rocksbastnäsite group, ancylite, monazite, (fluor)apatite, pyrochlore, xenotime, florenciteNa, Mg, Fe, P, Ba, F, S, Sr, Ca, Nb, Th, U, Zr, Cu, Ta, Ti, V, Mn, PbBalaram (2022)
    Igneous rocks (including hydrothermal rocks)bastnäsite group, aegirine, eudialyte, loparite, allanite, allanite, Fe-rich olivine, fayalite, monazite, fergusonite, zircon, xenotime, fluorapatite, ancylite, gadolinite, euxenite, mosandrite, calciteNa, K, Fe, Al, Zr, Ti, Nb, Ta, Li, F, Cl, Si, Th, U, P, Cs, Rb, Sn, W, Mo, Be, Ga, Hf, Mn, BBalaram (2022)
    Lateritesmonazite, apatite, pyrochlore, bastnäsite, churchite, rhabdophane, plumbogummite, zircon, florencite, xenotime, cerianite Fe, Al, Nb, Zr, Ti, Sn, Mn, P, Si, CeBalaram, 2022
    Ion-adsorption type REEsxenotime, monazite, apatite, kaolinite, halloysiteREEs, P, Si, U, Th, Zr, NJo et al. (2023)
    Altered rock type Au-(Ag-Pb-Zn) depositsnative gold, electrum, pyrite, chalcopyrite, galena, sphalerite, arsenopyrite, marmatiteAu, Ag, W, PbLu et al. (2019)
    Altered cataclastic rock-type Au depositspyrite, chalcopyrite, carbonate, sericite, chlorite, ankerite, epidote, chalcocite, galena, sphalerite, tetrahedrite, argentite, borniteZn, Cu, Cr, Ni, Mo, S, Pb, CoHan et al. (2020)
    Li-Sn-W deposits (Erzgebirge)quartz, zinnwaldite, trilithionite, seriesLi, F, Rb, Sn, Ta, Nb, W, Sc, Ga, In, Cs, TiBreiter et al. (2019)
    Exogenetic Li-depositsJadarite, clay minerals, carbonatesLi, K, Na, Mg, Ca, Rb, Cs, SO, BZheng et al. (2023)
    Li-beraring salt lake/brinehalite, anhydrite, dolomite, gypsum, calciteLi, K, Na, Rb, Cs, Br, Cl, SO, BMernagh et al. (2016)
    Volcano-sedimentary Li-B depositsdiaspore, boehmite, anatase, chamosite, clay mineralsLi, , Nb, Ta, Hf, Th, Zr, Sr, Cr, VSun et al. (2019)
    Li-REEs-redox elements-enriched Pennsylvanian coalsspodumene, rhabdophane, anatase, illite, kaoliniteLi, Cs, Ta, Ge, U, Mo, V, REEsXie et al. (2021)
    REEs-enriched Pennsylvanian coalsphosphorites, clay mineralsU, Mo, Ni, Zn, V, P, REEs, TOCMastalerz et al. (2020)
    Li, Nb-Ta-Zr-Hf-Ga-enriched Pennsylvanian coalskaolinite, calcite, pyriteLi, Ga, Se, Zr, Nb, Ta, Hf, ThDi et al. (2023)
    Placers and paleo-placers including regoliths which are not laterites but in-situ weathered overburden.monazite, xenotime,allanite, euxeniteTi, Nb, Zr, Au, Sn, Th, U, Pb, FBalaram (2022)
    Ni-sulfide depositspyrrhotite, pentlandite, pyrite, chalcopyrite, magnetite, chromiteCu, Ni, Cr, Co, Zn, Fe, MnHoatson et al. (2006)
    Ni-Cu-PGE depositspyrrhotite, pentlandite, chalcopyrite, pyrite, borniteNi, Cu, As, S, Se, Te, Os, Ir, Ru, Ph, Pt, PdEckstrand and Hulbert (2007)
    Polymetallic deposits (Cu-Pb-Zn), porphyry-type Mo (W), Skarn Mo-W)pyrite, chalcopyrite, sphalerite, galena, molybdenite, actinolite, tremolite, chlorite, epidoteCu, Fe, Ti, V, W, Pb, S, OLiu et al. (2020)
    Epithermal Cu-Au depositslimonite, pyrite, chalcocite, enargite, chalcopyrite, borniteAu, U, Cu, Fe, REEsLi et al. (2024a)
    Iron oxide-associated (including IOCG) depositsbastnäsite, synchysite, monazite, xenotime, florencite, britholiteFe, Cp, U, Au, A g, Ba, F, P, SBalaram (2022)
    Deep-sea mineral deposits (poly-metallic nodules, crust, sand, mud)vernadite, todorokite, Fe-oxyhydroxide, carbonate, fluorapatiteMn, Fe, P, Cu, Ni, CoBalaram (2022)
    Sediment-hosted Cu-Au-Ag depositskaolinite, halloysite, arsenic-rich pyrite, hematite, goethiteSi, Al, As, Fe, Au, Ag, CuCao et al. (2010)
    Polymetallic Pb-Zn-Cu-Ag depositspyrite, sphalerite, galena, chalcopyriteAg, Pb, Sb, Cu, Ni, Ti, RbWang et al. (2008)

    KSEEG
    Feb 28, 2025 Vol.58 No.1, pp. 1~97

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download