Econ. Environ. Geol. 2024; 57(5): 593-608
Published online October 29, 2024
https://doi.org/10.9719/EEG.2024.57.5.593
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : *jo@kigam.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
As surface resources are continually developed and depleted, there is an increasing need to explore deeper ore bodies. Simultaneously, global demand for eco-friendly energy sources increases due to decarbonization policies, intensifying competition among nations to secure critical mineral resources. Geochemical exploration is based on the behavior of specific elements derived from mineral deposits and should be conducted with consideration of numerous geological variables. The characteristics of elemental concentration around ore bodies, which can be observed in media such as natural water, river sediments, soil, rock, vegetation, and geogas, provide clues for predicting the distribution of undiscovered ore bodies. For this reason, it is essential to identify the types of indicator elements that can be used for exploration depending on the mineralization type, and to establish a systematic geological exploration methodology based on the behavior of elements around mineralized ore bodies. Furthermore, applying Al technology to these geochemical characteristics would aid to exploration for critical mineral resources.
Keywords hidden ore body, mineral resources, exploration methodology, geochemistry, indicator elements
조재국1,* · 이범한1 · 허철호2
1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2한국지질자원연구원 광물자원연구본부
지속적인 개발로 인해 지표에 노출된 자원이 고갈됨에 따라 지하 깊은 곳에 존재하는 부존 광체를 탐사할 필요성이 커지고 있다. 동시에 탈탄소화 정책의 일환으로 친환경 에너지 자원에 대한 글로벌 수요가 증가하면서 희소 광물자원을 확보하기 위한 국가 간 경쟁이 심화되었다. 지구화학 탐사는 광상에서 유래된 특정 원소의 거동을 기반으로 하며, 많은 지질학적 변수를 고려해야 한다. 자연수, 하천 퇴적물, 토양, 암석, 식생, 지오가스 등 다양한 매개체를 통해 관찰되는 광체 주변의 지시원소 농집 특성은 미확인 광체의 분포를 예측하는 데 중요한 단서를 제공한다. 따라서, 광화작용 유형별 탐사에 활용될 수 있는 지시원소를 특정하고, 광체 주변에서의 원소 거동 특성에 기반한 체계적인 지구화학 탐사법 확립이 필요하다. 나아가 이러한 지구화학적 특성에 기반하여 AI 기술을 적용한다면, 향후 광물 자원탐사에 도움이 될 것이다.
주요어 자원탐사, 부존광체, 핵심광물, 지구화학, 지시원소, 탐사 방법론
Econ. Environ. Geol. 2024; 57(5): 593-608
Published online October 29, 2024 https://doi.org/10.9719/EEG.2024.57.5.593
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Jaeguk Jo1,*, Bum Han Lee1, Chul-Ho Heo2
1Critical Minerals Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)
2Minerals Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM)
Correspondence to:*jo@kigam.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
As surface resources are continually developed and depleted, there is an increasing need to explore deeper ore bodies. Simultaneously, global demand for eco-friendly energy sources increases due to decarbonization policies, intensifying competition among nations to secure critical mineral resources. Geochemical exploration is based on the behavior of specific elements derived from mineral deposits and should be conducted with consideration of numerous geological variables. The characteristics of elemental concentration around ore bodies, which can be observed in media such as natural water, river sediments, soil, rock, vegetation, and geogas, provide clues for predicting the distribution of undiscovered ore bodies. For this reason, it is essential to identify the types of indicator elements that can be used for exploration depending on the mineralization type, and to establish a systematic geological exploration methodology based on the behavior of elements around mineralized ore bodies. Furthermore, applying Al technology to these geochemical characteristics would aid to exploration for critical mineral resources.
Keywords hidden ore body, mineral resources, exploration methodology, geochemistry, indicator elements
조재국1,* · 이범한1 · 허철호2
1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2한국지질자원연구원 광물자원연구본부
지속적인 개발로 인해 지표에 노출된 자원이 고갈됨에 따라 지하 깊은 곳에 존재하는 부존 광체를 탐사할 필요성이 커지고 있다. 동시에 탈탄소화 정책의 일환으로 친환경 에너지 자원에 대한 글로벌 수요가 증가하면서 희소 광물자원을 확보하기 위한 국가 간 경쟁이 심화되었다. 지구화학 탐사는 광상에서 유래된 특정 원소의 거동을 기반으로 하며, 많은 지질학적 변수를 고려해야 한다. 자연수, 하천 퇴적물, 토양, 암석, 식생, 지오가스 등 다양한 매개체를 통해 관찰되는 광체 주변의 지시원소 농집 특성은 미확인 광체의 분포를 예측하는 데 중요한 단서를 제공한다. 따라서, 광화작용 유형별 탐사에 활용될 수 있는 지시원소를 특정하고, 광체 주변에서의 원소 거동 특성에 기반한 체계적인 지구화학 탐사법 확립이 필요하다. 나아가 이러한 지구화학적 특성에 기반하여 AI 기술을 적용한다면, 향후 광물 자원탐사에 도움이 될 것이다.
주요어 자원탐사, 부존광체, 핵심광물, 지구화학, 지시원소, 탐사 방법론
Table 1 . Indicator minerals and associated elements for geochemical exploration by deposit types.
Ore deposits/mineralization types | Indicator minerals | Associated elements | References |
---|---|---|---|
Carbonatite rocks | bastnäsite group, ancylite, monazite, (fluor)apatite, pyrochlore, xenotime, florencite | Na, Mg, Fe, P, Ba, F, S, Sr, Ca, Nb, Th, U, Zr, Cu, Ta, Ti, V, Mn, Pb | Balaram (2022) |
Igneous rocks (including hydrothermal rocks) | bastnäsite group, aegirine, eudialyte, loparite, allanite, allanite, Fe-rich olivine, fayalite, monazite, fergusonite, zircon, xenotime, fluorapatite, ancylite, gadolinite, euxenite, mosandrite, calcite | Na, K, Fe, Al, Zr, Ti, Nb, Ta, Li, F, Cl, Si, Th, U, P, Cs, Rb, Sn, W, Mo, Be, Ga, Hf, Mn, B | Balaram (2022) |
Laterites | monazite, apatite, pyrochlore, bastnäsite, churchite, rhabdophane, plumbogummite, zircon, florencite, xenotime, cerianite | Fe, Al, Nb, Zr, Ti, Sn, Mn, P, Si, Ce | Balaram, 2022 |
Ion-adsorption type REEs | xenotime, monazite, apatite, kaolinite, halloysite | REEs, P, Si, U, Th, Zr, N | Jo et al. (2023) |
Altered rock type Au-(Ag-Pb-Zn) deposits | native gold, electrum, pyrite, chalcopyrite, galena, sphalerite, arsenopyrite, marmatite | Au, Ag, W, Pb | Lu et al. (2019) |
Altered cataclastic rock-type Au deposits | pyrite, chalcopyrite, carbonate, sericite, chlorite, ankerite, epidote, chalcocite, galena, sphalerite, tetrahedrite, argentite, bornite | Zn, Cu, Cr, Ni, Mo, S, Pb, Co | Han et al. (2020) |
Li-Sn-W deposits (Erzgebirge) | quartz, zinnwaldite, trilithionite, series | Li, F, Rb, Sn, Ta, Nb, W, Sc, Ga, In, Cs, Ti | Breiter et al. (2019) |
Exogenetic Li-deposits | Jadarite, clay minerals, carbonates | Li, K, Na, Mg, Ca, Rb, Cs, SO, B | Zheng et al. (2023) |
Li-beraring salt lake/brine | halite, anhydrite, dolomite, gypsum, calcite | Li, K, Na, Rb, Cs, Br, Cl, SO, B | Mernagh et al. (2016) |
Volcano-sedimentary Li-B deposits | diaspore, boehmite, anatase, chamosite, clay minerals | Li, , Nb, Ta, Hf, Th, Zr, Sr, Cr, V | Sun et al. (2019) |
Li-REEs-redox elements-enriched Pennsylvanian coals | spodumene, rhabdophane, anatase, illite, kaolinite | Li, Cs, Ta, Ge, U, Mo, V, REEs | Xie et al. (2021) |
REEs-enriched Pennsylvanian coals | phosphorites, clay minerals | U, Mo, Ni, Zn, V, P, REEs, TOC | Mastalerz et al. (2020) |
Li, Nb-Ta-Zr-Hf-Ga-enriched Pennsylvanian coals | kaolinite, calcite, pyrite | Li, Ga, Se, Zr, Nb, Ta, Hf, Th | Di et al. (2023) |
Placers and paleo-placers including regoliths which are not laterites but in-situ weathered overburden. | monazite, xenotime,allanite, euxenite | Ti, Nb, Zr, Au, Sn, Th, U, Pb, F | Balaram (2022) |
Ni-sulfide deposits | pyrrhotite, pentlandite, pyrite, chalcopyrite, magnetite, chromite | Cu, Ni, Cr, Co, Zn, Fe, Mn | Hoatson et al. (2006) |
Ni-Cu-PGE deposits | pyrrhotite, pentlandite, chalcopyrite, pyrite, bornite | Ni, Cu, As, S, Se, Te, Os, Ir, Ru, Ph, Pt, Pd | Eckstrand and Hulbert (2007) |
Polymetallic deposits (Cu-Pb-Zn), porphyry-type Mo (W), Skarn Mo-W) | pyrite, chalcopyrite, sphalerite, galena, molybdenite, actinolite, tremolite, chlorite, epidote | Cu, Fe, Ti, V, W, Pb, S, O | Liu et al. (2020) |
Epithermal Cu-Au deposits | limonite, pyrite, chalcocite, enargite, chalcopyrite, bornite | Au, U, Cu, Fe, REEs | Li et al. (2024a) |
Iron oxide-associated (including IOCG) deposits | bastnäsite, synchysite, monazite, xenotime, florencite, britholite | Fe, Cp, U, Au, A g, Ba, F, P, S | Balaram (2022) |
Deep-sea mineral deposits (poly-metallic nodules, crust, sand, mud) | vernadite, todorokite, Fe-oxyhydroxide, carbonate, fluorapatite | Mn, Fe, P, Cu, Ni, Co | Balaram (2022) |
Sediment-hosted Cu-Au-Ag deposits | kaolinite, halloysite, arsenic-rich pyrite, hematite, goethite | Si, Al, As, Fe, Au, Ag, Cu | Cao et al. (2010) |
Polymetallic Pb-Zn-Cu-Ag deposits | pyrite, sphalerite, galena, chalcopyrite | Ag, Pb, Sb, Cu, Ni, Ti, Rb | Wang et al. (2008) |
Shareef T. Al-Hamed, Sattar J. Al-Khafaji
Econ. Environ. Geol. 2025; 58(1): 33-51Yong-Un Chae, Cheong-Bin Kim, Sujin Ha, Jong-Deock Lim, Hyoun Soo Lim
Econ. Environ. Geol. 2024; 57(4): 449-471Inkyeong Moon, Insung Lee and Xiaoyong Yang
Econ. Environ. Geol. 2019; 52(3): 213-221