Research Paper

Split Viewer

Econ. Environ. Geol. 2024; 57(3): 305-317

Published online June 30, 2024

https://doi.org/10.9719/EEG.2024.57.3.305

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

The Effect of Changes in Soil Microbial Communities on Geochemical Behavior of Arsenic

Eui-Jeong Hwang1, Yejin Choi1, Hyeop-Jo Han2, Daeung Yoon1,*, Jong-Un Lee1,*

1Department of Energy and Resources Engineering, Chonnam National University, Gwangju 61186, Korea
2Geo-Environment Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea

Correspondence to : *duyoon@jnu.ac.kr / jongun@jnu.ac.kr

Received: May 4, 2024; Revised: June 17, 2024; Accepted: June 20, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

To investigate the effect of changes in microbial communities on arsenic release in soil, experiments were conducted on arsenic-contaminated soils (F1, G7, and G10). The experiments involved three groups of the experimental sets; ① BAC: sterilized soil + Bacillus fungorum, ② IND: indigenous bacteria, and ③ MIX: indigenous bacteria + B. fungorum, and incubated them for seven weeks using lactate as a carbon source under anaerobic conditions. The experimental results showed that higher concentrations of arsenic were released from the IND and MIX soils, where indigenous bacterial communities existed, compared to BAC. Significantly higher levels of arsenic were released from the G10 soil, which showed higher pH, compared to the F1 and G7 soils. In the G10 soil, unlike other soils, the proportion of As(III) among the released arsenic was also low. These results may be attributed to differences in microbial community composition that vary depending on the soil. By the seventh week, the diversity of microbial species in the IND and MIX soils had significantly decreased, with dominant orders such as Eubacteriales and Bacillales thriving. Bacteroidales in the seventh week of the MIX in the F1 soil, Rummeliibacillus in the seventh week of the IND and MIX of the G7 soil, and Enterobacterales in the IND and MIX of the G10 soil were dominant. At present, it is not known which mechanisms of microbial community changes affect the geochemical behavior of arsenic; however, these results indicate that microbiome in the soil may function as one of the factors regulating arsenic release.

Keywords soil, arsenic, microorganism, indigenous bacteria, microbial community

토양 미생물 군집의 변화가 비소의 지구화학적 거동에 미치는 영향

황의정1 ∙ 최예진1 ∙ 한협조2 ∙ 윤대웅1,* ∙ 이종운1,*

1전남대학교 에너지자원공학과
2한국지질자원연구원 자원환경연구센터

요 약

토양 내 미생물 군집의 변화가 비소 용출에 미치는 영향을 파악하기 위해 비소 오염 토양(F1, G7, G10)을 대상으로 실험을 수행하였다. 실험은 혐기적 조건에서 비소 오염 토양을 ① BAC: 멸균토양 + Bacillus fungorum, ② IND: 토착균 토양, ③ MIX: 토착균 토양 + B. fungorum으로 나누어 혐기적 조건에서 유산염을 탄소원으로 하여 7주간 배양하였다. 실험 결과, 토착균 군집이 존재하는 IND와 MIX에서 BAC에 비하여 높은 함량의 비소가 용출되었으며, pH가 높은 G10 토양에서 F1과 G7 토양에 비해 비소 용출량이 월등히 높았다. G10 토양의 경우, 다른 토양과 달리 용출된 비소 중 As(III) 함량의 비율이 낮았다. 이러한 결과는 토양에 따라 상이하게 나타나는 미생물 군집의 차이에 기인할 수도 있다. IND와 MIX는 7주차에 이르러 미생물의 다양성이 크게 감소하였으며 실험 조건에 적응한 Eubacteriales 및 Bacillales 등의 우점목이 번성하였다. F1 토양의 7주차 MIX에서는 Bacteroidales, G7 토양의 7주차 IND와 MIX에서는 Rummelibaciilus가 번성하였다. G10 토양의 IND와 MIX에서는 Enterobacterales가 우점목 중 하나를 차지하였다. 현재로서는 미생물 군집의 변화가 비소의 지구화학적 거동에 어떠한 메커니즘으로 영향을 미치는지에 관한 정보가 부족하나, 이러한 결과는 토양 내 마이크로바이옴이 비소의 용출을 조절하는 요인 중 하나로 기능할 수 있음을 나타낸다.

주요어 토양, 비소, 미생물, 토착균, 미생물 군집

Article

Research Paper

Econ. Environ. Geol. 2024; 57(3): 305-317

Published online June 30, 2024 https://doi.org/10.9719/EEG.2024.57.3.305

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

The Effect of Changes in Soil Microbial Communities on Geochemical Behavior of Arsenic

Eui-Jeong Hwang1, Yejin Choi1, Hyeop-Jo Han2, Daeung Yoon1,*, Jong-Un Lee1,*

1Department of Energy and Resources Engineering, Chonnam National University, Gwangju 61186, Korea
2Geo-Environment Research Center, Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea

Correspondence to:*duyoon@jnu.ac.kr / jongun@jnu.ac.kr

Received: May 4, 2024; Revised: June 17, 2024; Accepted: June 20, 2024

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

To investigate the effect of changes in microbial communities on arsenic release in soil, experiments were conducted on arsenic-contaminated soils (F1, G7, and G10). The experiments involved three groups of the experimental sets; ① BAC: sterilized soil + Bacillus fungorum, ② IND: indigenous bacteria, and ③ MIX: indigenous bacteria + B. fungorum, and incubated them for seven weeks using lactate as a carbon source under anaerobic conditions. The experimental results showed that higher concentrations of arsenic were released from the IND and MIX soils, where indigenous bacterial communities existed, compared to BAC. Significantly higher levels of arsenic were released from the G10 soil, which showed higher pH, compared to the F1 and G7 soils. In the G10 soil, unlike other soils, the proportion of As(III) among the released arsenic was also low. These results may be attributed to differences in microbial community composition that vary depending on the soil. By the seventh week, the diversity of microbial species in the IND and MIX soils had significantly decreased, with dominant orders such as Eubacteriales and Bacillales thriving. Bacteroidales in the seventh week of the MIX in the F1 soil, Rummeliibacillus in the seventh week of the IND and MIX of the G7 soil, and Enterobacterales in the IND and MIX of the G10 soil were dominant. At present, it is not known which mechanisms of microbial community changes affect the geochemical behavior of arsenic; however, these results indicate that microbiome in the soil may function as one of the factors regulating arsenic release.

Keywords soil, arsenic, microorganism, indigenous bacteria, microbial community

토양 미생물 군집의 변화가 비소의 지구화학적 거동에 미치는 영향

황의정1 ∙ 최예진1 ∙ 한협조2 ∙ 윤대웅1,* ∙ 이종운1,*

1전남대학교 에너지자원공학과
2한국지질자원연구원 자원환경연구센터

Received: May 4, 2024; Revised: June 17, 2024; Accepted: June 20, 2024

요 약

토양 내 미생물 군집의 변화가 비소 용출에 미치는 영향을 파악하기 위해 비소 오염 토양(F1, G7, G10)을 대상으로 실험을 수행하였다. 실험은 혐기적 조건에서 비소 오염 토양을 ① BAC: 멸균토양 + Bacillus fungorum, ② IND: 토착균 토양, ③ MIX: 토착균 토양 + B. fungorum으로 나누어 혐기적 조건에서 유산염을 탄소원으로 하여 7주간 배양하였다. 실험 결과, 토착균 군집이 존재하는 IND와 MIX에서 BAC에 비하여 높은 함량의 비소가 용출되었으며, pH가 높은 G10 토양에서 F1과 G7 토양에 비해 비소 용출량이 월등히 높았다. G10 토양의 경우, 다른 토양과 달리 용출된 비소 중 As(III) 함량의 비율이 낮았다. 이러한 결과는 토양에 따라 상이하게 나타나는 미생물 군집의 차이에 기인할 수도 있다. IND와 MIX는 7주차에 이르러 미생물의 다양성이 크게 감소하였으며 실험 조건에 적응한 Eubacteriales 및 Bacillales 등의 우점목이 번성하였다. F1 토양의 7주차 MIX에서는 Bacteroidales, G7 토양의 7주차 IND와 MIX에서는 Rummelibaciilus가 번성하였다. G10 토양의 IND와 MIX에서는 Enterobacterales가 우점목 중 하나를 차지하였다. 현재로서는 미생물 군집의 변화가 비소의 지구화학적 거동에 어떠한 메커니즘으로 영향을 미치는지에 관한 정보가 부족하나, 이러한 결과는 토양 내 마이크로바이옴이 비소의 용출을 조절하는 요인 중 하나로 기능할 수 있음을 나타낸다.

주요어 토양, 비소, 미생물, 토착균, 미생물 군집

    Fig 1.

    Figure 1.Microbial taxonomic composition of the studied soil samples at order level.
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Fig 2.

    Figure 2.Changes in pH of the soil samples over time.
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Fig 3.

    Figure 3.Variation in (a, c, e) dissolved AsTot (bar) and As(III) (dot) and (b, d, f) dissolved Fe concentrations over time. The numbers over each bar represent the ratios of As content observed in the soil samples after bacterial cultivation in the 7th week (× 1,000) to As content after aqua regia digestion of the soil.
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Fig 4.

    Figure 4.Bacterial community diversity of the studied soil samples. w: weeks.
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Fig 5.

    Figure 5.Microbial community changes at order level.
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Fig 6.

    Figure 6.Bacterial occupancy percentages over time from week 1 to week 7. The thickness of each line represents the percentage occupied by each of the top 10 microbial communities. (Scale width = 100%).
    Economic and Environmental Geology 2024; 57: 305-317https://doi.org/10.9719/EEG.2024.57.3.305

    Table 1 . The physicochemical properties of the studied soil samples.

    Soil PropertiesSoil F1Soil G7Soil G10
    pH6.35.75.8
    CEC (cmolc/kg)24.019.017.7
    LOI (%)9.78.57.9
    Aqua regia extraction (mg/kg)As312335
    Cu942717
    Zn1248168
    Fe(%)3.83.11.6
    Mehlich 3 extraction (mg/kg)As657
    Cu1954
    Zn251614
    Fe7,6966,1933,215

    KSEEG
    Oct 29, 2024 Vol.57 No.5, pp. 473~664

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download