Econ. Environ. Geol. 2023; 56(6): 887-897

Published online December 29, 2023

https://doi.org/10.9719/EEG.2023.56.6.887

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Review of International Cases for Managing Input Data in Safety Assessment for High-Level Radioactive Waste Deep Disposal Facilities

Mi Kyung Kang1, Hana Park1, Sunju Park1, Hae Sik Jeong1, Woon Sang Yoon1, Jeonghwan Lee2,*

1Earth EnG, Seoul, Korea
2Korea Radioactive Waste Agency

Correspondence to : *oathway@korad.or.kr

Received: November 20, 2023; Revised: December 14, 2023; Accepted: December 15, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Leading waste disposal countries, such as Sweden, Switzerland, and the United Kingdom, conduct safety assessments across all stages of High-Level Radioactive Waste Deep Geological Disposal Facilities-from planning and site selection to construction, operation, closure, and post-closure management. As safety assessments are repeatedly performed at each stage, generating vast amounts of diverse data over extended periods, it is essential to construct a database for safety assessment and establish a data management system. In this study, the safety assessment data management systems of leading countries, were analyzed, categorizing them into 1) input and reference data for safety assessments, 2) guidelines for data management, 3) organizational structures for data management, and 4) computer systems for data management. While each country exhibited differences in specific aspects, commonalities included the classification of safety assessment input data based on disposal system components, the establishment of organizations to supply, use, and manage this data, and the implementation of quality management systems guided by instructions and manuals. These cases highlight the importance of data management systems and document management systems for securing the safety and enhancing the reliability of High-Level Radioactive Waste Disposal Facilities. To achieve this, the classification of input data that can be flexibly and effectively utilized, ensuring the consistency and traceability of input data, and establishing a quality management system for input data and document management are necessary.

Keywords safety assessment, high-level radioactive waste, deep geological disposal, data management system, safety assessment input data

고준위방사성폐기물 심층처분시설 안전성평가 입력자료 관리를 위한 해외사례 분석

강미경1 · 박하나1 · 박선주1 · 정해식1 · 윤운상1 · 이정환2,*

1(주)어스이엔지
2한국원자력환경공단 방폐물기술연구원

요 약

스웨덴, 스위스, 영국 등 폐기물 처분 선도국들은 고준위방사성폐기물 심층처분시설의 계획, 부지선정, 건설, 운영, 폐쇄, 그리고 폐쇄 후 관리 전 단계에서 안전성평가를 수행하고 있다. 안전성평가는 각 단계에서 반복적으로 이루어지며, 장기간에 걸쳐 다양하고 방대한 양의 데이터를 생성하므로, 안전성평가 자료를 위한 데이터베이스를 구축하고 효과적으로 관리하기 위한 자료관리체계를 구축하는 것이 필수적이다. 본 연구에서는 폐기물 처분 분야에서 선도적인 국가의 안전성평가 자료관리체계를 1) 안전성평가 입력 및 참조자료, 2) 자료관리 지침, 3) 자료관리 조직, 그리고 4) 자료관리 전산시스템으로 구분하여 분석하였다. 각 국가는 특정 부분에서는 차이를 보였지만, 안전성평가 입력자료를 처분 시스템 구성 요소를 기반으로 분류하고, 이를 제공, 사용, 관리하는 조직을 설립하며, 지침 및 매뉴얼에 따라 품질관리 체계를 구현하는 등 공통적인 특성을 보이고 있다. 이러한 사례들은 고준위방사성폐기물 처분시설의 안전성을 확보하고 신뢰성을 향상시키기 위해 효과적으로 데이터 관리 시스템과 문서 관리 시스템을 구축하는 것이 중요하다는 것을 시사한다. 이를 위해서는 유연하게 활용 가능한 입력자료의 분류, 입력자료의 일관성과 추적성 보장, 그리고 입력자료와 문서관리를 위한 품질관리 체계를 수립하는 것이 필요하다.

주요어 고준위방사성폐기물, 심층처분시설, 안전성평가, 자료관리체계, 안전성평가 입력자료

Article

Review

Econ. Environ. Geol. 2023; 56(6): 887-897

Published online December 29, 2023 https://doi.org/10.9719/EEG.2023.56.6.887

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Review of International Cases for Managing Input Data in Safety Assessment for High-Level Radioactive Waste Deep Disposal Facilities

Mi Kyung Kang1, Hana Park1, Sunju Park1, Hae Sik Jeong1, Woon Sang Yoon1, Jeonghwan Lee2,*

1Earth EnG, Seoul, Korea
2Korea Radioactive Waste Agency

Correspondence to:*oathway@korad.or.kr

Received: November 20, 2023; Revised: December 14, 2023; Accepted: December 15, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Leading waste disposal countries, such as Sweden, Switzerland, and the United Kingdom, conduct safety assessments across all stages of High-Level Radioactive Waste Deep Geological Disposal Facilities-from planning and site selection to construction, operation, closure, and post-closure management. As safety assessments are repeatedly performed at each stage, generating vast amounts of diverse data over extended periods, it is essential to construct a database for safety assessment and establish a data management system. In this study, the safety assessment data management systems of leading countries, were analyzed, categorizing them into 1) input and reference data for safety assessments, 2) guidelines for data management, 3) organizational structures for data management, and 4) computer systems for data management. While each country exhibited differences in specific aspects, commonalities included the classification of safety assessment input data based on disposal system components, the establishment of organizations to supply, use, and manage this data, and the implementation of quality management systems guided by instructions and manuals. These cases highlight the importance of data management systems and document management systems for securing the safety and enhancing the reliability of High-Level Radioactive Waste Disposal Facilities. To achieve this, the classification of input data that can be flexibly and effectively utilized, ensuring the consistency and traceability of input data, and establishing a quality management system for input data and document management are necessary.

Keywords safety assessment, high-level radioactive waste, deep geological disposal, data management system, safety assessment input data

고준위방사성폐기물 심층처분시설 안전성평가 입력자료 관리를 위한 해외사례 분석

강미경1 · 박하나1 · 박선주1 · 정해식1 · 윤운상1 · 이정환2,*

1(주)어스이엔지
2한국원자력환경공단 방폐물기술연구원

Received: November 20, 2023; Revised: December 14, 2023; Accepted: December 15, 2023

요 약

스웨덴, 스위스, 영국 등 폐기물 처분 선도국들은 고준위방사성폐기물 심층처분시설의 계획, 부지선정, 건설, 운영, 폐쇄, 그리고 폐쇄 후 관리 전 단계에서 안전성평가를 수행하고 있다. 안전성평가는 각 단계에서 반복적으로 이루어지며, 장기간에 걸쳐 다양하고 방대한 양의 데이터를 생성하므로, 안전성평가 자료를 위한 데이터베이스를 구축하고 효과적으로 관리하기 위한 자료관리체계를 구축하는 것이 필수적이다. 본 연구에서는 폐기물 처분 분야에서 선도적인 국가의 안전성평가 자료관리체계를 1) 안전성평가 입력 및 참조자료, 2) 자료관리 지침, 3) 자료관리 조직, 그리고 4) 자료관리 전산시스템으로 구분하여 분석하였다. 각 국가는 특정 부분에서는 차이를 보였지만, 안전성평가 입력자료를 처분 시스템 구성 요소를 기반으로 분류하고, 이를 제공, 사용, 관리하는 조직을 설립하며, 지침 및 매뉴얼에 따라 품질관리 체계를 구현하는 등 공통적인 특성을 보이고 있다. 이러한 사례들은 고준위방사성폐기물 처분시설의 안전성을 확보하고 신뢰성을 향상시키기 위해 효과적으로 데이터 관리 시스템과 문서 관리 시스템을 구축하는 것이 중요하다는 것을 시사한다. 이를 위해서는 유연하게 활용 가능한 입력자료의 분류, 입력자료의 일관성과 추적성 보장, 그리고 입력자료와 문서관리를 위한 품질관리 체계를 수립하는 것이 필요하다.

주요어 고준위방사성폐기물, 심층처분시설, 안전성평가, 자료관리체계, 안전성평가 입력자료

    Fig 1.

    Figure 1.Document structure of Safety Assessment of SKB (modified after SKB, 2014b).
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    Fig 2.

    Figure 2.Assessment Model Flowchart (modified after SKB, 2014d).
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    Fig 3.

    Figure 3.Introduction for data and Document management of SKB (modified after SKB, 2008a).
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    Fig 4.

    Figure 4.Planned Nagra document structure for submitting general license applications gTL (modified after Nagra, 2019).
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    Fig 5.

    Figure 5.Document structure of Safety Assessment of SKB (modified after SKB, 2014b).
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    Fig 6.

    Figure 6.Input data used in safety assessment by country.
    Economic and Environmental Geology 2023; 56: 887-897https://doi.org/10.9719/EEG.2023.56.6.887

    The classification of the input data used in safety assessment(Sweden) (SKB, 2014c).


    ClassificationInput DataCode
    WasteGas formation rates and total gas volumes formed in each waste vault, IRF, CRF, Total radionuclide inventory, Corrosion of reactor pressure, vessels., etcEcolego
    Near Field excluding
    wasteBitumen swelling assessment, Evolution of repository pH, Evolution of repository redox, Near-field hydrology, RN transport in water phase, Seismic load., etcComsol Multiphysics, PHREEQC, PHAST, Ecolego, ADINA
    GeosphereHydrogeology, RN transport in water phase, Rock fallout and EDZ, Sorption partitioning coefficients, Effective diffusivity, Rock matrix porosity, Groundwater velocities, Permeability., etcDarcy Tools, Ecolego, 3DEC
    ClimateMinimum air temperature in next 60,000 years, Potential for permafrost, Shore-level evolution., etcCCSM4, LOVECLIM, Numerical GIA model
    BiosphereRN transport and dose, Surface hydrology, Biosphere object identification., etcEcolego, MIKE SHE


    The classification of the input data used in safety assessment(Swiss) (Nagra, 2002b).


    ClassificationInput DataCode
    Near-fieldNuclides and Decays, Total Inventory, Inventory Fractions, Canister Properties, Release Properties, Waste Package Properties(Containment time, Canister length, Number of canister), Buffer Properties(Inner, Outer radius, Split radius, Porosity, Grain density, Sorption, Solubility limits, Pore diffusion coefficients)., etcSTMAN
    GeosphereNuclides and Decays, Leg Data-Basic Data(Length, Darcy velocity, Hydraulic conductivity, Peclet number, effective diffusivities coefficients, Pore diffusion constant), Leg Data-Properties of Flowing Region(Retardation, Dry density, Flow porosity, Source flux)., etcPICNIC
    BiosphereDEEPSOIL(Porosity, Thickness, Dry density), HUMAN(Fraction of energy intake from grain, Breathing rate)., etcTAME


    gDSSC document tier structure (NWS, 2016a).


    TierDescription
    OverviewOrganization, purpose and overview of the entire document comprising the gDSSC
    Safety CaseSafety case reports covering radioactive waste transport(TSC), facility operation(OSC), and long-term safety after closure(ESC) at deep disposal facilities
    AssessmentEvaluation reports as basis for the three safety cases
    System informationBasic information document used for evaluation
    Supporting DocumentsSpecifications, guide documents, strategy documents, science and technology plan documents, etc.


    The classification of the input data used in safety assessment(UK) (NWS, 2016b).


    ClassificationInput Data
    Physical constantsNuclide, Half-life
    InventoryActive inventory, Number of waste containers, Cellulosic materials inventory, etc.
    WasteformInstant release fraction, Dissolution rates, Cellulose degradation properties, etc.
    Waste package propertiesContainer failure times, Container dimension, Gas release rate, etc.
    Engineered barrier systemPhysical properties, Radionuclide behaviour
    GDF and transport system designNumber of disposal vaults and tunnels, vault dimensions, GDF system maintenance data, etc.
    Vault backfill volumesVault backfill volumes
    Geosphere-illustrative environment H1Physical properties, Radionuclide behaviour, Radon gas emanation
    Geosphere-illustrative environment L1Physical properties, Radionuclide behaviour, Radon gas emanation
    Biosphere and onsite/offsite receptorsGroundwater dose conversion factor, Worker inhalation dose coefficients, etc


    NWS Guideline document system.


    Document classificationAbbreviationFull name
    RWMMManual
    RWPPaims and Principles
    RWPRPRPRocedure
    RWPR-FPR-FPRocedure-Form
    RWPR-WIPR-WIProcedure-Work Instruction


    Data management guidance document mentioned within the safety assessment data report.


    Document No.Document nameDisclosure
    RWP102Data Management Aims and PrinciplesPrivate
    RWPR104Data Management Procedureopen
    RWP31Computer Modelling Aims and PrinciplesPrivate
    RWPR31Computer Modelling, Software Development and Calculation Checkingopen
    RWPR110RWMD Competency Management SystemPrivate

    KSEEG
    Dec 31, 2024 Vol.57 No.6, pp. 665~835

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download