Econ. Environ. Geol. 2023; 56(6): 781-797

Published online December 29, 2023

https://doi.org/10.9719/EEG.2023.56.6.781

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry

Sang-Mo Koh1,2,*, Bum Han Lee1,2, Chul-Ho Heo1, Otgon-Erdene Davaasuren1

1Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources
2Geological Sciences, University of Science and Technology

Correspondence to : *kohsm@kigam.re.kr

Received: November 1, 2023; Revised: December 21, 2023; Accepted: December 21, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

Keywords critical minerals, Rare Earth Minerals, battery raw minerals, mineral deposit type, geological occurrences

첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황

고상모1,2,* · 이범한1,2 · 허철호1 · Otgon-Erdene Davaasuren1

1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2과학기술연합대학교 지질과학

요 약

최근 들어 첨단산업에 활용되는 핵심광물의 확보를 위한 광물수요국들의 대응이 빠르게 진행되고 있다. 흑연은 중국 생산량이 압도적 우위에 있지만, EV 배터리 부문의 기하급수적인 성장에 따라 글로벌 공급에서 변화가 초래되고 있으며, 동 아프리카에서의 활발한 탐사가 좋은 사례이다. 우리나라에서도 생산이 증가되고 있다. 희토류는 첨단산업에 폭넓게 사용되고 있는 핵심원료이다. 세계적으로 희토류를 생산하는 광상은 카보너타이트형, 라테라이트형 및 이온흡착형 광상이 개발 중에 있다. 중국의 생산이 다소 감소되는 추세이지만 여전히 압도적인 우위를 점하고 있다. 최근 수년간의 변화는 미얀마의 급부상과 베트남의 생산 증가이다. 니켈은 다양한 화학 및 금속 산업에 사용되어 온 금속이지만 최근 밧데리 비중이 점차 증가되고 있는 추세이다. 세계 니켈 광상은 초염기성암에서 유래된 유화형 광상과 라테라이트형 광상으로 크게 구분된다. 유화형 광상은 호주에서 개발이 지속적으로 증가 할 것으로 예측되며, 라테라이트형 광상은 인도네시아에서의 개발이 촉진 될 것으로 보인다. 리튬이온 배터리 수요에 따라 니켈 시장도 견인될 것으로 전망된다. 세계 리튬 광상은 염호형(78%)과 암석/광물형(스포듀민 19%), 점토형(3%)이 생산되고 있다. 암석형 광상이 염호형 광상보다 품위가 다소 높지만 매장량이 적고 페그마타이트에 함유된 스포듀민 리튬광물이 대상이다. 칠레, 아르헨티나, 미국에서는 염호형 광상을 주로 개발하고 있으며, 호주와 중국에서는 염호 및 암석/광물 두 근원으로부터 리튬을 추출하고 있고 캐나다에서는 암석/광물로부터만 생산한다. 바나듐은 전통적으로 강철 합금에 약 90% 이용되어 왔으나 최근 대규모 전력 저장을 위한 바나듐 레독스 흐름배터리 용도가 증가 추세에 있다. 세계 바나듐 공급원은 광산에서 생산하는 바나듐을 함유한 철광석(81%)과 부산물에서 회수하는 바나듐(2차 근원, 18%)으로 양대분 된다. 81%를 차지하는 바나듐-철광석 근원은 제강공정에서 유래된 바나듐 슬래그가 70%를 차지하고 광산에서 생산하는 1차 근원인 광석은 30%에 불가하다. 이러한 공급원으로부터 중간재인 바나듐 산화물이 제조된다. 바나듐 광상은 함바나듐 티탄자철석형 광상, 사암 모암형 광상, 셰일 모암형 광상과 바나듐산염형 광상으로 구분되는데 함바나듐 티탄자철석형 광상만이 현재 개발되고 있다.

주요어 핵심광물, 희토류, 배터리 원료광물, 광상유형, 지질학적 부존특성

Article

Review

Econ. Environ. Geol. 2023; 56(6): 781-797

Published online December 29, 2023 https://doi.org/10.9719/EEG.2023.56.6.781

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Situation of Utilization and Geological Occurrences of Critical Minerals(Graphite, REE, Ni, Li, and V) Used for a High-tech Industry

Sang-Mo Koh1,2,*, Bum Han Lee1,2, Chul-Ho Heo1, Otgon-Erdene Davaasuren1

1Critical Minerals Research Center, Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources
2Geological Sciences, University of Science and Technology

Correspondence to:*kohsm@kigam.re.kr

Received: November 1, 2023; Revised: December 21, 2023; Accepted: December 21, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Recently, there has been a rapid response from mineral-demanding countries for securing critical minerals in a high tech industries. Graphite, while overwhelmingly dominated by China in production, is changing in global supply due to the exponential growth in EV battery sector, with active exploration in East Africa. Rare earth elements are essential raw materials widely used in advanced industries. Globally, there are ongoing developments in the production of REEs from three main deposit types: carbonatite, laterite, and ion-adsorption clay types. While China's production has decreased somewhat, it still maintains overwhelming dominance in this sector. Recent changes over the past few years include the rapid emergence of Myanmar and increased production in Vietnam. Nickel has been used in various chemical and metal industries for a long time, but recently, its significance in the market has been increasing, particularly in the battery sector. Worldwide, nickel deposits can be broadly classified into two types: laterite-type, which are derived from ultramafic rocks, and ultramafic hosted sulfide-type. It is predicted that the development of sulfide-type, primarily in Australia, will continue to grow, while the development of laterite-type is expected to be promoted in Indonesia. This is largely driven by the growing demand for nickel in response to the demand for lithium-ion batteries. The global lithium ores are produced in three main types: brine lake (78%), rock/mineral (19%), and clay types (3%). Rock/mineral type has a slightly higher grade compared to brine lake type, but they are less abundant. Chile, Argentina, and the United States primarily produce lithium from brine lake deposits, while Australia and China extract lithium from both brine lake and rock/mineral sources. Canada, on the other hand, exclusively produces lithium from rock/mineral type. Vanadium has traditionally been used in steel alloys, accounting for approximately 90% of its usage. However, there is a growing trend in the use for vanadium redox flow batteries, particularly for large-scale energy storage applications. The global sources of vanadium can be broadly categorized into two main types: vanadium contained in iron ore (81%) produced from mines and vanadium recovered from by-products (secondary sources, 18%). The primary source, accounting for 81%, is vanadium-iron ores, with 70% derived from vanadium slag in the steel making process and 30% from ore mined in primary sources. Intermediate vanadium oxides are manufactured from these sources. Vanadium deposits are classified into four types: vanadiferous titanomagnetite (VTM), sandstone-hosted, shale-hosted, and vanadate types. Currently, only the VTM-type ore is being produced.

Keywords critical minerals, Rare Earth Minerals, battery raw minerals, mineral deposit type, geological occurrences

첨단산업용 핵심광물(흑연, REE, Ni, Li, V)의 지질학적 부존특성 및 활용현황

고상모1,2,* · 이범한1,2 · 허철호1 · Otgon-Erdene Davaasuren1

1한국지질자원연구원 광물자원연구본부 희소금속광상연구센터
2과학기술연합대학교 지질과학

Received: November 1, 2023; Revised: December 21, 2023; Accepted: December 21, 2023

요 약

최근 들어 첨단산업에 활용되는 핵심광물의 확보를 위한 광물수요국들의 대응이 빠르게 진행되고 있다. 흑연은 중국 생산량이 압도적 우위에 있지만, EV 배터리 부문의 기하급수적인 성장에 따라 글로벌 공급에서 변화가 초래되고 있으며, 동 아프리카에서의 활발한 탐사가 좋은 사례이다. 우리나라에서도 생산이 증가되고 있다. 희토류는 첨단산업에 폭넓게 사용되고 있는 핵심원료이다. 세계적으로 희토류를 생산하는 광상은 카보너타이트형, 라테라이트형 및 이온흡착형 광상이 개발 중에 있다. 중국의 생산이 다소 감소되는 추세이지만 여전히 압도적인 우위를 점하고 있다. 최근 수년간의 변화는 미얀마의 급부상과 베트남의 생산 증가이다. 니켈은 다양한 화학 및 금속 산업에 사용되어 온 금속이지만 최근 밧데리 비중이 점차 증가되고 있는 추세이다. 세계 니켈 광상은 초염기성암에서 유래된 유화형 광상과 라테라이트형 광상으로 크게 구분된다. 유화형 광상은 호주에서 개발이 지속적으로 증가 할 것으로 예측되며, 라테라이트형 광상은 인도네시아에서의 개발이 촉진 될 것으로 보인다. 리튬이온 배터리 수요에 따라 니켈 시장도 견인될 것으로 전망된다. 세계 리튬 광상은 염호형(78%)과 암석/광물형(스포듀민 19%), 점토형(3%)이 생산되고 있다. 암석형 광상이 염호형 광상보다 품위가 다소 높지만 매장량이 적고 페그마타이트에 함유된 스포듀민 리튬광물이 대상이다. 칠레, 아르헨티나, 미국에서는 염호형 광상을 주로 개발하고 있으며, 호주와 중국에서는 염호 및 암석/광물 두 근원으로부터 리튬을 추출하고 있고 캐나다에서는 암석/광물로부터만 생산한다. 바나듐은 전통적으로 강철 합금에 약 90% 이용되어 왔으나 최근 대규모 전력 저장을 위한 바나듐 레독스 흐름배터리 용도가 증가 추세에 있다. 세계 바나듐 공급원은 광산에서 생산하는 바나듐을 함유한 철광석(81%)과 부산물에서 회수하는 바나듐(2차 근원, 18%)으로 양대분 된다. 81%를 차지하는 바나듐-철광석 근원은 제강공정에서 유래된 바나듐 슬래그가 70%를 차지하고 광산에서 생산하는 1차 근원인 광석은 30%에 불가하다. 이러한 공급원으로부터 중간재인 바나듐 산화물이 제조된다. 바나듐 광상은 함바나듐 티탄자철석형 광상, 사암 모암형 광상, 셰일 모암형 광상과 바나듐산염형 광상으로 구분되는데 함바나듐 티탄자철석형 광상만이 현재 개발되고 있다.

주요어 핵심광물, 희토류, 배터리 원료광물, 광상유형, 지질학적 부존특성

    Fig 1.

    Figure 1.Mineral demand for clean energy technologies by scenario(IEA, 2021).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 2.

    Figure 2.Grade-tonnage diagram of global representative amorphous and crystalline graphite deposits(UKDiss, 2022).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 3.

    Figure 3.Global distribution map of graphite deposits(Baker Steel Capital Managers LLP, 2022).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 4.

    Figure 4.Map showing the global distribution of graphite projects, battery anode facilities and capacity(S&P Global, 2022).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 5.

    Figure 5.REE metals and oxides for utilization(Kim and Park, 2021).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 6.

    Figure 6.2019 utilization ratio of rare earths by use(A: volume-based, B: price-based)(Kim and Park, 2021).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 7.

    Figure 7.World map showing locations of active or recently active rare-earth-element(REE) mines and ongoing advanced exploration projects(Van Gosen et al., 2017).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 8.

    Figure 8.1994-2022 global production currency of REO(Metric tons-rare earth oxide equivalent) (Geoscience News and Information, 2023).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 9.

    Figure 9.Global nickel consumption by first use 2020 and 2030(Reuters, 2021).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 10.

    Figure 10.World distribution map of significant sulfide and laterite nickel deposits. Sulfide deposits containing important by-products of PGEs or have associated PGE–Ni deposits are also shown(modified from Elias, 2002; Hoatson et al., 2006).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 11.

    Figure 11.Logarithmic plot of nickel grade(wt.%) versus global resources of nickel ore(production plus reserves and resources in million tonnes) for the major nickel sulfide deposits of the world(Hoatson et al., 2006). Australian deposits are shown with filled symbols and the major foreign deposits with open symbols. The gray diagonal lines indicate contained nickel metal in tonnes. The field enclosed by the dash line corresponds to the major nickel laterite deposits of the world(Elias, 2002). World-class deposits shown in large symbols are defined as those containing more than one million tonnes of contained nickel metal. Data for Australian deposits compiled from OZMIN, and other deposits from Naldrett (2002) and Eckstrand(1995).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 12.

    Figure 12.Map of world Li production in 2020 and location of lithium mining and refining companies(Desaulty et al., 2021). World mine production in 2020 is from USGS(2021).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 13.

    Figure 13.The four main types of lithium deposit form a grade-size distribution(Sykes and Schodde, 2019).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 14.

    Figure 14.Grade-tonnage diagram of global brine type lithium deposits(Lithium power, 2017).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 15.

    Figure 15.Global supply chain of vanadium(Ecclestone, 2020).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 16.

    Figure 16.Global distribution map of vanadium deposits(Kelly et al., 2017).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Fig 17.

    Figure 17.Plot of grade and tonnage of vanadium deposits for which data were available (Kelly et al., 2017).
    Economic and Environmental Geology 2023; 56: 781-797https://doi.org/10.9719/EEG.2023.56.6.781

    Global graphite production and Reserves(USGS, 2023).


    CountryProduction (ton)Reserves (ton)
    20212022
    China820,000850,00052,000,000
    Brazil82,00087,00074,000,000
    Mozambique72,000170,00025,000,000
    Madagascar70,000110,00026,000,000
    Russia15,00015,00014,000,000
    Canada12,00015,000NA
    South Korea10,50017,0001,800,000
    Ukraine10,0003,000NA
    North Koea8,1008,1002,000,000
    Turkey2,7002,90090,000,000
    Others30,40024,90045,200,000
    Total1,130,0001,300,000330,000,000


    Global Rare Earth Oxides(REO) production and Reserves (USGS, 2023).


    CountryProduction(REO ton)Reserves (REO ton)
    20212022
    China168,000210,00044,000,000
    USA42,00043,0002,300,000
    Myanmar35,00012,000NA
    Australia24,00018,0004,200,000
    Thailand8,2007,100NA
    Madagascar6,800960NA
    India2,9002,9006,900,000
    Russia2,6002,60021,000,000
    Brazil5008021,000,000
    Vietnam4004,30022,000,000
    Total290,000300,000130,000,000

    KSEEG
    Apr 30, 2024 Vol.57 No.2, pp. 107~280

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download