Econ. Environ. Geol. 2023; 56(4): 409-419
Published online August 30, 2023
https://doi.org/10.9719/EEG.2023.56.4.409
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : *greenidea@hoseo.edu
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 μm. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.
Keywords acid mine drainage(AMD), coal mine drainage sludge, arsenic, adsorption, leaching test
김정은1,2 · 지원현2,*
1환경기술정책연구원 (NeLab)
2호서대학교 일반대학원 에너지기후환경융합기술학과
산성광산배수 처리방법은 적극적 처리방식과 소극적 처리방식이 일반적으로 사용되고 있으며, 이때 발생되는 부산물인 슬러지는 국내에서 약 5천 톤/년으로 발생하고 있다. 본 연구는 적극적 처리방식 중 물리·화학적 처리방식으로 정화 후 발생되는 슬러지의 특성을 조사하여 재활용 가능여부를 검토하기 위함이다. 5개소(D, H, S, T, Y) 수질정화시설의 슬러지의 특성을 물리·화학적 분석을 통해 검토하였다. 그 결과 pH는 pH 5.86 ~ pH 7.89로 측정되었고, 수분함량은 51 % ~ 82 %로 분석되었으며, 입자 크기는 대부분 25 ㎛보다 작은 미립자로 구성되었음을 확인할 수 있었다. ICP-OES를 이용한 슬러지 내 무기물질 분석결과, Al, Fe, Mn의 농도범위는 각각 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, 3,472 mg/kg ~ 11,743 mg/kg로 조사되어 고농도로 존재함을 확인 할 수 있었다. 그 외 무기물질 중 중금속류에 대해서는 T-슬러지는 As와 Zn, D-슬러지는 Cd, H-슬러지는 Ni, S-슬러지는 Zn, Y-슬러지는 Cd의 농도가 토양오염우려기준을 초과하였다.
또한 슬러지의 용출 특성을 알기위해 폐기물 용출시험(KSLT) 및 TCLP 시험을 진행하였다. 슬러지 재활용시 용출되어 지하수에 미치는 영향 확인을 위해 지하수 수질기준(생활용수) 20개 항목에 대하여 수행하였다. 용출시험결과 특정유해물질 16개 항목에서 모두 불검출로 확인되었으며, 일반항목 4개 항목에 대해서는 모두 생활용수 기준치 이내로 만족하였다. XRD, SEM-EDS의 분석결과, 슬러지는 주로 방해석, 석영의 패턴을 보였으며, 높은 Fe, O의 구성비율로 철수산화물이 높은 비중을 차지하는 것으로 보였다. 이를 통해서 비매체접촉형 방식의 재활용의 가능성이 있을 것으로 판단된다.
주요어 산성광산배수, 석탄광산배수슬러지, 비소, 흡착, 용출시험
Econ. Environ. Geol. 2023; 56(4): 409-419
Published online August 30, 2023 https://doi.org/10.9719/EEG.2023.56.4.409
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Jung-Eun Kim1,2, Won Hyun Ji2,*
1National Environment Lab. (NeLab), Seoul, 02841, Korea
2Department of Energy & Climate Environment Fusion Technology, Graduate shool Hoseo University, Asan, 31499, Korea
Correspondence to:*greenidea@hoseo.edu
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 μm. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.
Keywords acid mine drainage(AMD), coal mine drainage sludge, arsenic, adsorption, leaching test
김정은1,2 · 지원현2,*
1환경기술정책연구원 (NeLab)
2호서대학교 일반대학원 에너지기후환경융합기술학과
산성광산배수 처리방법은 적극적 처리방식과 소극적 처리방식이 일반적으로 사용되고 있으며, 이때 발생되는 부산물인 슬러지는 국내에서 약 5천 톤/년으로 발생하고 있다. 본 연구는 적극적 처리방식 중 물리·화학적 처리방식으로 정화 후 발생되는 슬러지의 특성을 조사하여 재활용 가능여부를 검토하기 위함이다. 5개소(D, H, S, T, Y) 수질정화시설의 슬러지의 특성을 물리·화학적 분석을 통해 검토하였다. 그 결과 pH는 pH 5.86 ~ pH 7.89로 측정되었고, 수분함량은 51 % ~ 82 %로 분석되었으며, 입자 크기는 대부분 25 ㎛보다 작은 미립자로 구성되었음을 확인할 수 있었다. ICP-OES를 이용한 슬러지 내 무기물질 분석결과, Al, Fe, Mn의 농도범위는 각각 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, 3,472 mg/kg ~ 11,743 mg/kg로 조사되어 고농도로 존재함을 확인 할 수 있었다. 그 외 무기물질 중 중금속류에 대해서는 T-슬러지는 As와 Zn, D-슬러지는 Cd, H-슬러지는 Ni, S-슬러지는 Zn, Y-슬러지는 Cd의 농도가 토양오염우려기준을 초과하였다.
또한 슬러지의 용출 특성을 알기위해 폐기물 용출시험(KSLT) 및 TCLP 시험을 진행하였다. 슬러지 재활용시 용출되어 지하수에 미치는 영향 확인을 위해 지하수 수질기준(생활용수) 20개 항목에 대하여 수행하였다. 용출시험결과 특정유해물질 16개 항목에서 모두 불검출로 확인되었으며, 일반항목 4개 항목에 대해서는 모두 생활용수 기준치 이내로 만족하였다. XRD, SEM-EDS의 분석결과, 슬러지는 주로 방해석, 석영의 패턴을 보였으며, 높은 Fe, O의 구성비율로 철수산화물이 높은 비중을 차지하는 것으로 보였다. 이를 통해서 비매체접촉형 방식의 재활용의 가능성이 있을 것으로 판단된다.
주요어 산성광산배수, 석탄광산배수슬러지, 비소, 흡착, 용출시험
Inorganic material analysis method for sludge.
Inorganic classification | Pretreatment | Anlaysis | |
---|---|---|---|
Metals (11) | As, Cu, Pb, Zn, Ni, Al, Fe, Mn | Aqua regia digestion | ICP-OES (model 8300, Perkin-Elmer Inc.) |
Cd | AAS (model ICE-3000, Thermo scientific Inc.) | ||
Hg | - | Hg analysis (model DMA-80, Milestone Inc.) | |
Cr6+ | Alkaline digestion | UV/Vis (model Lamda 25, Perkin-Elmer Inc.) | |
Non-metals (2) | CN | Distillation | |
F | Distillation |
Comparison of Leaching test.
KSLT | TCLP | |
---|---|---|
Max particel size(mm) | 5.0 | 9.5 |
Leaching Medium | HCl | Acetate buffered solution |
pH of leaching Medium | 5.8 ~ 6.3 | No.1 4.93 ± 0.05 No.2 2.28 ± 0.05 |
Time of extraction | 6 hour | 18 hour |
Liquid : Solid ratio | 10 : 1 | 20 : 1 |
Temp. | room temp. | 22 ± 3 ℃ |
Speed | 200 rpm | 30 ± 2 rpm |
Shaking method | rotational shaking | end-over-end fashion |
Filter size | 1 µm | 0.6 ~ 0.8 µm |
Analysis method and GC/MS analysis conditions for OPPs and VOCs.
Item | Organic compounds(OPPs) | |
---|---|---|
Pretreatment | Liquid extraction | |
Equipment | GC/MS (model 7890B/5977B, Agilent Inc.) | |
GC analysis condition | Column | DB-5MS(Cross-linked 5% phenylmethylsilicon, 30 m × 0.25 mm I.D × 0.25 μm, film thickness) |
Carrier gas(flow) | He(1.0 mL/min) | |
Split ratio | 1/10 | |
Injector temp. | 300℃ | |
Detector temp. | 280℃ | |
Oven temp. | 70℃(4min holding)-300℃(10℃/min)-300℃(5min holding) | |
Item | VOCs (model 8890A/5977B, Agilent Inc.) | |
Pretreatment | Purge&Trap | |
Equipment | GC/MS | |
Purge &Trap analysis condition | Trap | Vocarb 3000 |
Purge gas(flow) | He gas(37 mL/min) | |
Desorb gas(flow) | He gas(20 mL/min) | |
Purge time | 11 min | |
Dry purge time | 0.5 min | |
Bake time | 4 min | |
Purge Temp. | Ambient | |
Desorb Temp. | 245 ℃ | |
Bake Temp. | 280 ℃ | |
GC analysis condition | Column | DB-5MS(Cross-linked 5% phenylmethylsilicon, 30 m × 0.25 mm I.D × 0.25 μm, film thickness) |
Carrier gas(flow) | He(1.0 mL/min) | |
Split ratio | 1/10 | |
Injector temp. | 200℃ | |
Detector temp. | 280℃ | |
Oven temp. | 40℃(2min holding)-125℃(7℃/min)-230℃(12℃/min)-230℃(3 min holding) |
pH, moisture content and particle size distribution of the studied sludges.
Sludge name | pH | Moisture content(%) | Chemical | Particle size(µm) distribution | (unit:%) | |||
---|---|---|---|---|---|---|---|---|
> 75 | 75 ~ 45 | 45 ~ 38 | 38 ~ 25 | 25 > | ||||
D | 7.15 | 50.9 | Ca(OH)2 | 0.24 | 1.58 | 0.85 | 2.35 | 94.98 |
H | 7.69 | 52.0 | Ca(OH)2 | 1.19 | 1.67 | 0.52 | 1.03 | 95.59 |
S | 5.88 | 74.5 | None Use | 0.26 | 0.49 | 0.54 | 0.72 | 98.00 |
T | 5.86 | 82.4 | PAC | 0.85 | 0.74 | 0.22 | 0.59 | 97.59 |
Y | 7.89 | 74.6 | Ca(OH)2 | 0.76 | 2.14 | 0.66 | 0.66 | 95.77 |
Metal and non-metal concentration of the studied sludges (Unit : mg/kg).
Sludge name | D | H | S | T | Y | LOQ(1) | Standard(2) | ||
---|---|---|---|---|---|---|---|---|---|
Item | Worrisome | Countermeasure | |||||||
As | 15.77 | 7.32 | 4.00 | 31.19 | 2.15 | 1.5 | 25 | 75 | |
Cd | 4.06 | 3.83 | 3.91 | 2.41 | 5.05 | 0.10 | 4 | 12 | |
Cu | 2.9 | 1.7 | 3.6 | 46.6 | 12.3 | 1.0 | 150 | 450 | |
Pb | 3.9 | 4.1 | 6.8 | 10.2 | 9.7 | 1.5 | 200 | 600 | |
Zn | 137.9 | 297.5 | 1,157.2 | 588.7 | 249.6 | 1.0 | 300 | 900 | |
Ni | 10.9 | 102.1 | 55.6 | 73.6 | 196.4 | 0.4 | 100 | 300 | |
Hg | N.D.(3) | N.D.(3) | N.D.(3) | 0.03 | 0.01 | 0.01 | 4 | 12 | |
Cr6+ | 0.55 | N.D.(3) | N.D.(3) | 0.75 | N.D.(3) | 0.5 | 5 | 15 | |
CN | N.D.(3) | N.D.(3) | N.D.(3) | N.D.(3) | N.D.(3) | 0.2 | 2 | 5 | |
F | 67 | 123 | 207 | 1,195 | 231 | 10 | 400 | 800 | |
Al | 1,189 | 2,743 | 45,082 | 129,344 | 13,980 | - | - | - | |
Fe | 123,567 | 136,267 | 317,529 | 106,132 | 338,011 | - | - | - | |
Mn | 3,840 | 11,743 | 3,473 | 5,819 | 6,326 | - | - | - |
(1) Limit of quantification.
(2) Criteria for agricultural soil from soil environment conservation act of Korea.
(3) N.D.(Not Detected) : less than LOQ.
Contents of elements in soils and the earth's crust (Unit : mg/kg).
Element | Soil | Crust | |
---|---|---|---|
Average | Range | Average | |
Al | 71,000 | 10,000 ~ 300,000 | 82,000 |
Fe | 40,000 | 2,000 ~ 550,000 | 41,000 |
Mn | 1,000 | 20 ~ 10,000 | 950 |
Leaching test(KSLT and TCLP) result of the studied sludges.
KSLT(1) | TCLP(2) | LOQ(3) | Standard(4) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
D | H | S | T | Y | D | H | S | T | Y | |||
pH | 7.9 | 8.3 | 7.8 | 7.7 | 7.8 | - | - | - | - | - | - | 5.8~8.5 |
Total coliform | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 5,000 |
NO3-N | 2.1 | 0.2 | 2.0 | 3.8 | 0.2 | 1.0 | 0.2 | 1.0 | 1.8 | 0.1 | 0.1 | 20 |
Cl | 1.4 | 2.7 | 8.0 | 4.6 | 13.9 | 47.5 | 39.7 | 54.6 | 114.1 | 49.6 | 0.1 | 250 |
Cd | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.004 | 0.01 |
As | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.05 | 0.05 |
CN | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.010.01 | |
Hg | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.0005 | 0.001 |
Diazinon | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.0005 | 0.02 |
Parathion | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.0005 | 0.06 |
Phenol | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.005 | 0.005 |
Pb | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.04 | 0.1 |
Cr | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.007 | 0.05 |
Benzene | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.015 |
Toluene | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 1 |
Ethylbenzene | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.45 |
Xylene | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.75 |
TCE | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.03 |
PCE | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.01 |
1,1,1-TCA(6) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | N.D.(5) | 0.001 | 0.15 |
(1) Korea standard leaching test.
(2) Toxicity characteristic leaching procedure.
(3) Limit of quantification.
(4) Criteria for domestic water from groundwater conservation act of Korea.
(5) N.D.(Not Detected) : less than LOQ.
(6) 1,1,1-trichloroethan.
Kyeongtae Kim, Ilham Abdul Latief, Danu Kim, Seonhee Kim, Minhee Lee
Econ. Environ. Geol. 2022; 55(4): 377-388Kung-Won Choi, Seong-Sook Park, Chan-Ung Kang, Joon Hak Lee, Sun Joon Kim
Econ. Environ. Geol. 2021; 54(6): 689-698Joon Hak Lee, Won Hyun Ji, Jin Soo Lee, Seong Sook Park, Kung Won Choi, Chan Ung Kang and Sun Joon Kim
Econ. Environ. Geol. 2020; 53(6): 667-675