Research Paper

Split Viewer

Econ. Environ. Geol. 2023; 56(4): 409-419

Published online August 30, 2023

https://doi.org/10.9719/EEG.2023.56.4.409

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage

Jung-Eun Kim1,2, Won Hyun Ji2,*

1National Environment Lab. (NeLab), Seoul, 02841, Korea
2Department of Energy & Climate Environment Fusion Technology, Graduate shool Hoseo University, Asan, 31499, Korea

Correspondence to : *greenidea@hoseo.edu

Received: March 13, 2023; Revised: July 13, 2023; Accepted: August 4, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 μm. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

Keywords acid mine drainage(AMD), coal mine drainage sludge, arsenic, adsorption, leaching test

광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가

김정은1,2 · 지원현2,*

1환경기술정책연구원 (NeLab)
2호서대학교 일반대학원 에너지기후환경융합기술학과

요 약

산성광산배수 처리방법은 적극적 처리방식과 소극적 처리방식이 일반적으로 사용되고 있으며, 이때 발생되는 부산물인 슬러지는 국내에서 약 5천 톤/년으로 발생하고 있다. 본 연구는 적극적 처리방식 중 물리·화학적 처리방식으로 정화 후 발생되는 슬러지의 특성을 조사하여 재활용 가능여부를 검토하기 위함이다. 5개소(D, H, S, T, Y) 수질정화시설의 슬러지의 특성을 물리·화학적 분석을 통해 검토하였다. 그 결과 pH는 pH 5.86 ~ pH 7.89로 측정되었고, 수분함량은 51 % ~ 82 %로 분석되었으며, 입자 크기는 대부분 25 ㎛보다 작은 미립자로 구성되었음을 확인할 수 있었다. ICP-OES를 이용한 슬러지 내 무기물질 분석결과, Al, Fe, Mn의 농도범위는 각각 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, 3,472 mg/kg ~ 11,743 mg/kg로 조사되어 고농도로 존재함을 확인 할 수 있었다. 그 외 무기물질 중 중금속류에 대해서는 T-슬러지는 As와 Zn, D-슬러지는 Cd, H-슬러지는 Ni, S-슬러지는 Zn, Y-슬러지는 Cd의 농도가 토양오염우려기준을 초과하였다.
또한 슬러지의 용출 특성을 알기위해 폐기물 용출시험(KSLT) 및 TCLP 시험을 진행하였다. 슬러지 재활용시 용출되어 지하수에 미치는 영향 확인을 위해 지하수 수질기준(생활용수) 20개 항목에 대하여 수행하였다. 용출시험결과 특정유해물질 16개 항목에서 모두 불검출로 확인되었으며, 일반항목 4개 항목에 대해서는 모두 생활용수 기준치 이내로 만족하였다. XRD, SEM-EDS의 분석결과, 슬러지는 주로 방해석, 석영의 패턴을 보였으며, 높은 Fe, O의 구성비율로 철수산화물이 높은 비중을 차지하는 것으로 보였다. 이를 통해서 비매체접촉형 방식의 재활용의 가능성이 있을 것으로 판단된다.

주요어 산성광산배수, 석탄광산배수슬러지, 비소, 흡착, 용출시험

Article

Research Paper

Econ. Environ. Geol. 2023; 56(4): 409-419

Published online August 30, 2023 https://doi.org/10.9719/EEG.2023.56.4.409

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Evaluation of Characteristics of Sludge generated from Active Treatment System of Mine Drainage

Jung-Eun Kim1,2, Won Hyun Ji2,*

1National Environment Lab. (NeLab), Seoul, 02841, Korea
2Department of Energy & Climate Environment Fusion Technology, Graduate shool Hoseo University, Asan, 31499, Korea

Correspondence to:*greenidea@hoseo.edu

Received: March 13, 2023; Revised: July 13, 2023; Accepted: August 4, 2023

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Acid mine drainage(AMD) treatment is classified as both passive and active treatment. During the treatment, about 5,000 tons of neutralization sludge is generated as a by-product per year in Korea. This study was conducted to evaluate the characteristics of sludge generated from physico·chemical treatment processes as an active treatment from 5 different sources (D, H, S, T, Y) and the possibility of the sludges being recycled. The sludges have a pH range of 5.86 ~ pH 7.89, and a water content range of 51% ~ 82%. Most of particle sizes were less than 25 μm. In analysis of inorganic elements, the concentration of Al, Fe, and Mn were between 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, and 3,472 mg/kg ~ 11,743 mg/kg, respectively. The concentration of As and Zn in sludge-T, Cd in sludge-D, Ni in sludge-H, Zn in sludge-S, and Cd in sludge-Y exceeded the soil contamination standards of Korea. The results from 2 separate kinds of leaching test, the Korea Standard Leaching Test(KSLT) and Toxicity Characteristic Leaching Procedure(TCLP), showed that all the sludges met the Korea groundwater standards. From the XRD and SEM-EDS analysis, the peaks of calcite and quartz were found in the sludges. The sludge also had a high proportion of Fe and O, and the majority of the composition was amorphous iron hydroxide.

Keywords acid mine drainage(AMD), coal mine drainage sludge, arsenic, adsorption, leaching test

광산배수의 적극적 처리시설에서 발생하는 슬러지 특성 평가

김정은1,2 · 지원현2,*

1환경기술정책연구원 (NeLab)
2호서대학교 일반대학원 에너지기후환경융합기술학과

Received: March 13, 2023; Revised: July 13, 2023; Accepted: August 4, 2023

요 약

산성광산배수 처리방법은 적극적 처리방식과 소극적 처리방식이 일반적으로 사용되고 있으며, 이때 발생되는 부산물인 슬러지는 국내에서 약 5천 톤/년으로 발생하고 있다. 본 연구는 적극적 처리방식 중 물리·화학적 처리방식으로 정화 후 발생되는 슬러지의 특성을 조사하여 재활용 가능여부를 검토하기 위함이다. 5개소(D, H, S, T, Y) 수질정화시설의 슬러지의 특성을 물리·화학적 분석을 통해 검토하였다. 그 결과 pH는 pH 5.86 ~ pH 7.89로 측정되었고, 수분함량은 51 % ~ 82 %로 분석되었으며, 입자 크기는 대부분 25 ㎛보다 작은 미립자로 구성되었음을 확인할 수 있었다. ICP-OES를 이용한 슬러지 내 무기물질 분석결과, Al, Fe, Mn의 농도범위는 각각 1,189 mg/kg ~ 129,344 mg/kg, 106,132 mg/kg ~ 338,011 mg/kg, 3,472 mg/kg ~ 11,743 mg/kg로 조사되어 고농도로 존재함을 확인 할 수 있었다. 그 외 무기물질 중 중금속류에 대해서는 T-슬러지는 As와 Zn, D-슬러지는 Cd, H-슬러지는 Ni, S-슬러지는 Zn, Y-슬러지는 Cd의 농도가 토양오염우려기준을 초과하였다.
또한 슬러지의 용출 특성을 알기위해 폐기물 용출시험(KSLT) 및 TCLP 시험을 진행하였다. 슬러지 재활용시 용출되어 지하수에 미치는 영향 확인을 위해 지하수 수질기준(생활용수) 20개 항목에 대하여 수행하였다. 용출시험결과 특정유해물질 16개 항목에서 모두 불검출로 확인되었으며, 일반항목 4개 항목에 대해서는 모두 생활용수 기준치 이내로 만족하였다. XRD, SEM-EDS의 분석결과, 슬러지는 주로 방해석, 석영의 패턴을 보였으며, 높은 Fe, O의 구성비율로 철수산화물이 높은 비중을 차지하는 것으로 보였다. 이를 통해서 비매체접촉형 방식의 재활용의 가능성이 있을 것으로 판단된다.

주요어 산성광산배수, 석탄광산배수슬러지, 비소, 흡착, 용출시험

    Fig 1.

    Figure 1.Mine water purification facility process diagram and sludge sampling.
    Economic and Environmental Geology 2023; 56: 409-419https://doi.org/10.9719/EEG.2023.56.4.409

    Fig 2.

    Figure 2.XRD Images of the studied sludges samples ((a) D-sludge, (b) H-sludge, (c) S-sludge, (d) T-sludge, (e) Y-sludge).
    Economic and Environmental Geology 2023; 56: 409-419https://doi.org/10.9719/EEG.2023.56.4.409

    Fig 3.

    Figure 3.SEM-EDS analysis of the studied sludge samples ((a) D-sludge, (b) H-sludge, (c) S-sludge, (d) T-sludge, (e) Y-sludge).
    Economic and Environmental Geology 2023; 56: 409-419https://doi.org/10.9719/EEG.2023.56.4.409

    Inorganic material analysis method for sludge.


    Inorganic classificationPretreatmentAnlaysis
    Metals (11)As, Cu, Pb, Zn, Ni, Al, Fe, MnAqua regia digestionICP-OES
    (model 8300, Perkin-Elmer Inc.)
    CdAAS
    (model ICE-3000, Thermo scientific Inc.)
    Hg-Hg analysis
    (model DMA-80, Milestone Inc.)
    Cr6+Alkaline digestionUV/Vis
    (model Lamda 25, Perkin-Elmer Inc.)
    Non-metals (2)CNDistillation
    FDistillation


    Comparison of Leaching test.


    KSLTTCLP
    Max particel size(mm)5.09.5
    Leaching MediumHClAcetate buffered solution
    pH of leaching Medium5.8 ~ 6.3No.1 4.93 ± 0.05
    No.2 2.28 ± 0.05
    Time of extraction6 hour18 hour
    Liquid : Solid ratio10 : 120 : 1
    Temp.room temp.22 ± 3 ℃
    Speed200 rpm30 ± 2 rpm
    Shaking methodrotational shakingend-over-end fashion
    Filter size1 µm0.6 ~ 0.8 µm


    Analysis method and GC/MS analysis conditions for OPPs and VOCs.


    ItemOrganic compounds(OPPs)
    PretreatmentLiquid extraction
    EquipmentGC/MS (model 7890B/5977B, Agilent Inc.)
    GC analysis conditionColumnDB-5MS(Cross-linked 5% phenylmethylsilicon, 30 m × 0.25 mm I.D × 0.25 μm, film thickness)
    Carrier gas(flow)He(1.0 mL/min)
    Split ratio1/10
    Injector temp.300℃
    Detector temp.280℃
    Oven temp.70℃(4min holding)-300℃(10℃/min)-300℃(5min holding)
    ItemVOCs (model 8890A/5977B, Agilent Inc.)
    PretreatmentPurge&Trap
    EquipmentGC/MS
    Purge &Trap analysis conditionTrapVocarb 3000
    Purge gas(flow)He gas(37 mL/min)
    Desorb gas(flow)He gas(20 mL/min)
    Purge time11 min
    Dry purge time0.5 min
    Bake time4 min
    Purge Temp.Ambient
    Desorb Temp.245 ℃
    Bake Temp.280 ℃
    GC analysis conditionColumnDB-5MS(Cross-linked 5% phenylmethylsilicon, 30 m × 0.25 mm I.D × 0.25 μm, film thickness)
    Carrier gas(flow)He(1.0 mL/min)
    Split ratio1/10
    Injector temp.200℃
    Detector temp.280℃
    Oven temp.40℃(2min holding)-125℃(7℃/min)-230℃(12℃/min)-230℃(3 min holding)


    pH, moisture content and particle size distribution of the studied sludges.


    Sludge namepHMoisture content(%)ChemicalParticle size(µm) distribution(unit:%)
    > 7575 ~ 4545 ~ 3838 ~ 2525 >
    D7.1550.9Ca(OH)20.241.580.852.3594.98
    H7.6952.0Ca(OH)21.191.670.521.0395.59
    S5.8874.5None Use0.260.490.540.7298.00
    T5.8682.4PAC0.850.740.220.5997.59
    Y7.8974.6Ca(OH)20.762.140.660.6695.77


    Metal and non-metal concentration of the studied sludges (Unit : mg/kg).


    Sludge nameDHSTYLOQ(1)Standard(2)
    ItemWorrisomeCountermeasure
    As15.777.324.0031.192.151.52575
    Cd4.063.833.912.415.050.10412
    Cu2.91.73.646.612.31.0150450
    Pb3.94.16.810.29.71.5200600
    Zn137.9297.51,157.2588.7249.61.0300900
    Ni10.9102.155.673.6196.40.4100300
    HgN.D.(3)N.D.(3)N.D.(3)0.030.010.01412
    Cr6+0.55N.D.(3)N.D.(3)0.75N.D.(3)0.5515
    CNN.D.(3)N.D.(3)N.D.(3)N.D.(3)N.D.(3)0.225
    F671232071,19523110400800
    Al1,1892,74345,082129,34413,980---
    Fe123,567136,267317,529106,132338,011---
    Mn3,84011,7433,4735,8196,326---

    (1) Limit of quantification.

    (2) Criteria for agricultural soil from soil environment conservation act of Korea.

    (3) N.D.(Not Detected) : less than LOQ.



    Contents of elements in soils and the earth's crust (Unit : mg/kg).


    ElementSoilCrust
    AverageRangeAverage
    Al71,00010,000 ~ 300,00082,000
    Fe40,0002,000 ~ 550,00041,000
    Mn1,00020 ~ 10,000950


    Leaching test(KSLT and TCLP) result of the studied sludges.


    KSLT(1)TCLP(2)LOQ(3)Standard(4)
    DHSTYDHSTY
    pH7.98.37.87.77.8------5.8~8.5
    Total coliform0000000000-5,000
    NO3-N2.10.22.03.80.21.00.21.01.80.10.120
    Cl1.42.78.04.613.947.539.754.6114.149.60.1250
    CdN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0040.01
    AsN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.050.05
    CNN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.010.01
    HgN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.00050.001
    DiazinonN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.00050.02
    ParathionN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.00050.06
    PhenolN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0050.005
    PbN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.040.1
    CrN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0070.05
    BenzeneN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.015
    TolueneN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0011
    EthylbenzeneN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.45
    XyleneN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.75
    TCEN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.03
    PCEN.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.01
    1,1,1-TCA(6)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)N.D.(5)0.0010.15

    (1) Korea standard leaching test.

    (2) Toxicity characteristic leaching procedure.

    (3) Limit of quantification.

    (4) Criteria for domestic water from groundwater conservation act of Korea.

    (5) N.D.(Not Detected) : less than LOQ.

    (6) 1,1,1-trichloroethan.


    KSEEG
    Aug 30, 2024 Vol.57 No.4, pp. 353~471

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download