Research Paper

Split Viewer

Econ. Environ. Geol. 2022; 55(6): 717-726

Published online December 31, 2022

https://doi.org/10.9719/EEG.2022.55.6.717

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine

Han-Gyum Kim1, Bum-Jun Kim1, Myoung-Soo Ko1,2,*

1Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea
2Department of Energy and Resources Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

Correspondence to : *Corresponding author : msko@kangwon.ac.kr

Received: December 20, 2022; Revised: December 22, 2022; Accepted: December 22, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Keywords geochemical distribution, contamination source identification, heavy metals, arsenic, soil

폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사

김한겸1 · 김범준1 · 고명수1,2,*

1강원대학교 에너지·인프라 시스템 용합학과
2강원대학교 에너지자원공학과

요 약

이 연구는 폐금·은광산 주변의 토양과 수계에서 비소(As), 카드뮴(Cd), 구리(Cu), 납(Pb), 안티모니(Sb), 아연(Zn)의 지구화학적 분산 특성을 확인하였다. 토양시료 내 각 원소의 지구화학적 오염도는 enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI)와 같은 지화학 지수를 이용해 평가하였다. 수계의 지구화학적 오염도는 광물찌꺼기 적치장에서부터 거리에 따른 중금속 및 황산염(SO42-)의 농도 변화를 이용하여 평가하였다. 지화학 지수를 이용한 토양의 오염도 평가 결과 광산 및 광물찌꺼기 저장시설과 가까운 지역에서 As, Cd, Pb, Zn의 농축지수가 높게 나타났으며, Sb는 모든 토양시료에서 높은 농축지수를 보였다. 이러한 결과는 광산 활동으로 대표되는 인위적인 요인에 의해 주변의 토양으로 중금속의 분산이 진행되었음을 보여주는 결과이다. 수계에서 중금속 농도 및 SO42-의 농도 변화를 확인한 결과 특정 지점에서 As, Cd, Zn, 그리고 SO42- 농도의 이상점이 나타났으며, 거리에 따라 점차 각 원소의 농도가 감소하였다. 이는 수계의 오염이 광물찌꺼기 적치장과 그 인근의 황화광물의 풍화에 기인한 것을 의미한다. 조사를 수행한 지역에서는 과거에 중금속으로 오염된 토양의 복원사업이 진행되었지만, 그 이후에도 잠재적인 오염원인 광물찌꺼기 적치장 인근에서부터 오염이 다시 진행되고 있는 것으로 판단된다. 따라서 복원을 완료한 지역에서도 토양과 수질시료를 대상으로 지속적인 모니터링이 필요할 것으로 판단된다.

주요어 : 지구화학적 분산, 오염원 기원 추적, 중금속, 비소, 토양

Article

Research Paper

Econ. Environ. Geol. 2022; 55(6): 717-726

Published online December 31, 2022 https://doi.org/10.9719/EEG.2022.55.6.717

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine

Han-Gyum Kim1, Bum-Jun Kim1, Myoung-Soo Ko1,2,*

1Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea
2Department of Energy and Resources Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea

Correspondence to:*Corresponding author : msko@kangwon.ac.kr

Received: December 20, 2022; Revised: December 22, 2022; Accepted: December 22, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Keywords geochemical distribution, contamination source identification, heavy metals, arsenic, soil

폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사

김한겸1 · 김범준1 · 고명수1,2,*

1강원대학교 에너지·인프라 시스템 용합학과
2강원대학교 에너지자원공학과

Received: December 20, 2022; Revised: December 22, 2022; Accepted: December 22, 2022

요 약

이 연구는 폐금·은광산 주변의 토양과 수계에서 비소(As), 카드뮴(Cd), 구리(Cu), 납(Pb), 안티모니(Sb), 아연(Zn)의 지구화학적 분산 특성을 확인하였다. 토양시료 내 각 원소의 지구화학적 오염도는 enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI)와 같은 지화학 지수를 이용해 평가하였다. 수계의 지구화학적 오염도는 광물찌꺼기 적치장에서부터 거리에 따른 중금속 및 황산염(SO42-)의 농도 변화를 이용하여 평가하였다. 지화학 지수를 이용한 토양의 오염도 평가 결과 광산 및 광물찌꺼기 저장시설과 가까운 지역에서 As, Cd, Pb, Zn의 농축지수가 높게 나타났으며, Sb는 모든 토양시료에서 높은 농축지수를 보였다. 이러한 결과는 광산 활동으로 대표되는 인위적인 요인에 의해 주변의 토양으로 중금속의 분산이 진행되었음을 보여주는 결과이다. 수계에서 중금속 농도 및 SO42-의 농도 변화를 확인한 결과 특정 지점에서 As, Cd, Zn, 그리고 SO42- 농도의 이상점이 나타났으며, 거리에 따라 점차 각 원소의 농도가 감소하였다. 이는 수계의 오염이 광물찌꺼기 적치장과 그 인근의 황화광물의 풍화에 기인한 것을 의미한다. 조사를 수행한 지역에서는 과거에 중금속으로 오염된 토양의 복원사업이 진행되었지만, 그 이후에도 잠재적인 오염원인 광물찌꺼기 적치장 인근에서부터 오염이 다시 진행되고 있는 것으로 판단된다. 따라서 복원을 완료한 지역에서도 토양과 수질시료를 대상으로 지속적인 모니터링이 필요할 것으로 판단된다.

주요어 : 지구화학적 분산, 오염원 기원 추적, 중금속, 비소, 토양

    Fig 1.

    Figure 1.Soil and water sampling points in the study area.
    Economic and Environmental Geology 2022; 55: 717-726https://doi.org/10.9719/EEG.2022.55.6.717

    Fig 2.

    Figure 2.As, Cd, Cu, Pb, Sb, and Zn distribution in soil samples with distance from mine tailing dam.
    Economic and Environmental Geology 2022; 55: 717-726https://doi.org/10.9719/EEG.2022.55.6.717

    Fig 3.

    Figure 3.Enrichment Factor (EF) of As, Cd, Cu, Pb, Sb, and Zn in the soil samples.
    Economic and Environmental Geology 2022; 55: 717-726https://doi.org/10.9719/EEG.2022.55.6.717

    Fig 4.

    Figure 4.Correlations of As, Cd, Zn and SO42- in water samples.
    Economic and Environmental Geology 2022; 55: 717-726https://doi.org/10.9719/EEG.2022.55.6.717

    Table 1 . Background concentration of elements in the soil (Kabata-Pendias, 2011).

    ElementsConcentration (mg/kg)
    As6.83
    Cd0.41
    Cu38.9
    Pb27
    Zn70
    Sb0.67
    Fe35,000

    Table 2 . Geochemical properties of soil and water samples with distance from mine tailing dam.

    DistanceSoilWater
    pHLOI (%)CEC (meq/100 g)pHORP (mV)DO (mg/L)
    < 1 km5.162.162.337.08162.507.42
    < 2 km5.062.452.527.45121.834.98
    < 3 km6.473.063.018.54115.307.96

    Table 3 . Heavy metals and sulfate concentration of water samples in the study area.

    No.Distance (m)AsCdCuPbSbZnSO42-
    (㎍/L)(mg/L)
    A39130.5412.8018.614.40N.D.3263.5494.68
    B52420.546.914.280.98N.D.1436.7853.61
    C78512.953.404.243.61N.D.655.8833.01
    D6500.84N.D.2.00N.D.N.D.27.843.69
    E11902.13N.D.N.D.N.D.N.D.3.796.87
    F11527.760.892.17N.D.N.D.176.3317.56
    G13000.72N.D.1.57N.D.N.D.11.013.73
    H12778.930.772.61N.D.N.D.140.1417.67
    I16101.82N.D.N.D.1.05N.D.5.516.88
    J14721.15N.D.2.251.09N.D.97.578.19
    K215010.21N.D.14.202.12N.D.57.5118.35
    L25349.64N.D.4.022.37N.D.23.0519.70
    M280010.59N.D.3.57N.D.N.D.71.0320.48

    N.D.: Not determined.


    Table 4 . Average Igeo values of the soil samples with distance from mine tailing dam and classification.

    Elements< 1 km< 2 km< 3 kmIgeoSoil quality
    As0.9-0.7-0.4≤0Practically uncontaminated
    Cd0.50.00.00-1Uncontaminated to moderately contaminated
    Cu-0.9-2.6-1.91-2Moderately contaminated
    Pb0.2-0.7-0.52-3Moderately to heavily contaminated
    Sb2.52.32.33-4Heavily contaminated
    Zn0.80.30.54-5Heavily to extremely contaminated

    Table 5 . Average CF and PLI values of the soil samples.

    DistanceCF valuesPLI
    AsCdCuPbSbZn
    < 1 km4.40 (4.63)*2.11 (1.92)*0.93 (0.93)*2.07 (1.32)*9.19 (3.17)*2.93 (1.35)*2.07 (1.08)*
    < 2 km0.94 (0.26)*-0.32 (0.19)*0.95 (0.29)*7.67 (2.33)*1.90 (0.49)*0.67 (0.39)*
    < 3 km1.20 (0.49)*-0.53 (0.41)*1.15 (0.43)*8.19 (3.77)*2.23 (0.58)*1.06 (0.35)*

    (0.00)*: standard deviation.


    KSEEG
    Aug 30, 2024 Vol.57 No.4, pp. 353~471

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download