Research Paper

Split Viewer

Econ. Environ. Geol. 2022; 55(6): 649-659

Published online December 31, 2022

https://doi.org/10.9719/EEG.2022.55.6.649

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Physical Properties of Major Bedrocks in Chungju-Goesan Area as Aggregates

Byoung-Woon You, Jaehyung Yu*

Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 31134, Republic of Korea

Correspondence to : *Corresponding author : jaeyu@cnu.ac.kr

Received: December 10, 2022; Revised: December 15, 2022; Accepted: December 16, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

This study examined the granite, quartzite, phyllite, schist, and gneiss as aggregate resources among the original rock distributed in the Chungju-Goesan area. The granite distributed in the study area is mainly composed of Jurassic biotite granite, and the quartzite layer is from the Daehyangsan quartzite Formation distributed on the upper part of the Gyemyeongsan Formation and the Hyangsan-ri dolomitic limestone Formation. In addition, phyllite is pophyrytic phyllite-schist from the Hwanggangri Formation of the Okcheon group, schist is chlorite schist, from the Munjuri Formation of the Okcheon group, and gneiss is porphyroblastic gneiss which is the upper part of the Seochangri Formation. Aggregate quality evaluation factors of these rocks included fineness modulus, absorption, unit weight, absolute dry density, solid content, porosity, resistance to abrasion, and soundness. In the case of granite, it was found to be partially unsatisfactory in terms of unit weight, solid content, porosity, and resistance to abrasion. Gneiss was found to be out of the standard values in resistance to abrasion and schist in porosity and solid content. As for the overall quality of aggregate resources, it was analyzed that quartzite, gneiss, and phyllite showed excellent quality. Aggregate quality tests are performed simply for each rock, but the rock may vary depending on the morphology of the mineral. Therefore, when analyzing and utilizing the quality evaluation of aggregate resources, it will be possible to use them more efficiently if the rock-mineralological research is performed together.

Keywords aggregate, rock type, physical properties, aggregate quality

충주-괴산일대에서 산출되는 주요 기반암의 골재로서의 물성특징

유병운 · 유재형*

충남대학교 우주 · 지질학과

요 약

본 연구는 충주-괴산일대에 분포하는 기반암 중 화강암, 규암, 천매암, 편암, 편마암의 골재자원으로서의 활용도를 고찰하였다. 연구지역에 분포하는 화강암류는 쥬라기 흑운모 화강암이 주를 이루고, 규암층은 계명산층과 향산리 돌로마이트 석회암 상부에 분포하는 대향산규암층으로 이루어져 있다. 또한 천매암은 옥천대 황강리층을 구성하는 함력천매암질암이고, 편암은 옥천대 문주리층인 녹니석편암, 편마암은 서창리층 상부에 해당하는 반상변정편마암으로 이루어져 있다. 본 기반암들의 골재품질 평가요소로는 조립률, 흡수율, 단위용적질량, 절대건조밀도, 실적률, 공극률, 마모율, 안정성 등이 고려되었다. 본 기반암들의 골재품질 평가 결과 대부분이 기본 골재품질기준을 만족하는 것으로 나타났으며, 암종별 물성특성 분포범위는 다르게 나타났다. 화강암의 경우, 단위용적질량, 실적률, 공극률, 마모율에서 일부 만족하지 못하는 것으로 나타났으며, 편마암은 마모율에서, 편암은 공극률과 실적률에서 기준치를 벗어났다. 전반적인 골재자원으로서의 품질은 규암, 편마암 및 천매암이 우수한 품질을 보이는 것으로 분석되었다. 골재품질시험은 암석별로 개략적으로 이루어지지만 같은 암석이라도 광물의 형상(morphology)에 다라 달라질수있다. 따라서골재자원의품질평가를분석, 활용할때암석-광물학적연구를병행한다면더욱효율적으로활용이가능할것이다.

주요어 골재, 암종, 물성특징, 골재품질

Article

Research Paper

Econ. Environ. Geol. 2022; 55(6): 649-659

Published online December 31, 2022 https://doi.org/10.9719/EEG.2022.55.6.649

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Physical Properties of Major Bedrocks in Chungju-Goesan Area as Aggregates

Byoung-Woon You, Jaehyung Yu*

Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon 31134, Republic of Korea

Correspondence to:*Corresponding author : jaeyu@cnu.ac.kr

Received: December 10, 2022; Revised: December 15, 2022; Accepted: December 16, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

This study examined the granite, quartzite, phyllite, schist, and gneiss as aggregate resources among the original rock distributed in the Chungju-Goesan area. The granite distributed in the study area is mainly composed of Jurassic biotite granite, and the quartzite layer is from the Daehyangsan quartzite Formation distributed on the upper part of the Gyemyeongsan Formation and the Hyangsan-ri dolomitic limestone Formation. In addition, phyllite is pophyrytic phyllite-schist from the Hwanggangri Formation of the Okcheon group, schist is chlorite schist, from the Munjuri Formation of the Okcheon group, and gneiss is porphyroblastic gneiss which is the upper part of the Seochangri Formation. Aggregate quality evaluation factors of these rocks included fineness modulus, absorption, unit weight, absolute dry density, solid content, porosity, resistance to abrasion, and soundness. In the case of granite, it was found to be partially unsatisfactory in terms of unit weight, solid content, porosity, and resistance to abrasion. Gneiss was found to be out of the standard values in resistance to abrasion and schist in porosity and solid content. As for the overall quality of aggregate resources, it was analyzed that quartzite, gneiss, and phyllite showed excellent quality. Aggregate quality tests are performed simply for each rock, but the rock may vary depending on the morphology of the mineral. Therefore, when analyzing and utilizing the quality evaluation of aggregate resources, it will be possible to use them more efficiently if the rock-mineralological research is performed together.

Keywords aggregate, rock type, physical properties, aggregate quality

충주-괴산일대에서 산출되는 주요 기반암의 골재로서의 물성특징

유병운 · 유재형*

충남대학교 우주 · 지질학과

Received: December 10, 2022; Revised: December 15, 2022; Accepted: December 16, 2022

요 약

본 연구는 충주-괴산일대에 분포하는 기반암 중 화강암, 규암, 천매암, 편암, 편마암의 골재자원으로서의 활용도를 고찰하였다. 연구지역에 분포하는 화강암류는 쥬라기 흑운모 화강암이 주를 이루고, 규암층은 계명산층과 향산리 돌로마이트 석회암 상부에 분포하는 대향산규암층으로 이루어져 있다. 또한 천매암은 옥천대 황강리층을 구성하는 함력천매암질암이고, 편암은 옥천대 문주리층인 녹니석편암, 편마암은 서창리층 상부에 해당하는 반상변정편마암으로 이루어져 있다. 본 기반암들의 골재품질 평가요소로는 조립률, 흡수율, 단위용적질량, 절대건조밀도, 실적률, 공극률, 마모율, 안정성 등이 고려되었다. 본 기반암들의 골재품질 평가 결과 대부분이 기본 골재품질기준을 만족하는 것으로 나타났으며, 암종별 물성특성 분포범위는 다르게 나타났다. 화강암의 경우, 단위용적질량, 실적률, 공극률, 마모율에서 일부 만족하지 못하는 것으로 나타났으며, 편마암은 마모율에서, 편암은 공극률과 실적률에서 기준치를 벗어났다. 전반적인 골재자원으로서의 품질은 규암, 편마암 및 천매암이 우수한 품질을 보이는 것으로 분석되었다. 골재품질시험은 암석별로 개략적으로 이루어지지만 같은 암석이라도 광물의 형상(morphology)에 다라 달라질수있다. 따라서골재자원의품질평가를분석, 활용할때암석-광물학적연구를병행한다면더욱효율적으로활용이가능할것이다.

주요어 골재, 암종, 물성특징, 골재품질

    Fig 1.

    Figure 1.Geological map of study area(Kim et al., 2020).
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 2.

    Figure 2.Photographs of Granite outcrop and thin section(Crossed nicol). Abbreviations: Qz=Quartz, Pl=Plagioclase, Mc=Microcline, Bt=Biotite, Ms=Muscovite.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 3.

    Figure 3.Photographs of Gneiss outcrop and thin section(Crossed nicol). Abbreviations: Qz=Quartz, Pl=Plagioclase.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 4.

    Figure 4.Photographs of Phyllite outcrop and thin section(Crossed nicol and open nicol). Abbreviation: Qz=Quartz, Bt=Biotite.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 5.

    Figure 5.Photographs of Schist outcrop and thin section(Crossed nicol). Abbreviations: Qz=Quartz, Bt=Biotite, Ms=Muscovite, Chl=Chlorite.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 6.

    Figure 6.Photographs of Quartzite outcrop and thin section(Crossed nicol and Open nicol). Abbreviations: Qz=Quartz, Ms=Muscovite.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Fig 7.

    Figure 7.Box and Whisker plot diagram of aggregate physical properties of major bedrocks.
    Economic and Environmental Geology 2022; 55: 649-659https://doi.org/10.9719/EEG.2022.55.6.649

    Table 1 . Mineral Composition of Major Bedrocks analyzed from XRD(X-Ray Diffraction).

    Sample NameComposition
    GraniteQuartz, K-feldspar, Plagioclase, Mica, Chlorite
    GneissQuartz, Plagioclase, K-felsapar, Mica, Magnetite
    SchistPlagioclase, Amphibole, Chlorite, Biotite
    PhylliteQuartz, Plagioclase, Chlorite, Calcite, Amphibole, Biotite, Dolomite
    QuartziteQuartz, Calcite, Amphibole, Dolomite

    Table 2 . Mineral contents of Major Bedrocks analyzed from XRD(X-Ray Diffraction).

    Granitequartzplagio claseK-feld sparmusco vitechloritecalcitehorn blendebiotitekaoli nitetotal
    28.335.018.08.67.42.699.9
    32.935.018.62.311.2100.0
    25.038.317.52.20.61.514.9100.0
    39.032.119.59.4100.0
    43.523.419.311.62.2100.0
    33.933.222.08.62.2100.0
    Gneissquartzplagio claseK-feld sparmusco vitechloritecalcitemagnetitehematitehorn blendebiotiteanthophyllitetotal
    30.828.925.23.30.111.7100.0
    24.527.336.82.29.3100.1
    32.524.514.09.819.2100.0
    20.735.727.04.61.011.1100.1
    31.49.622.79.63.015.28.5100.0
    38.726.226.28.9100.0
    39.630.717.312.4100.0
    Phyllitequartzplagio claseK-feld sparmuscovitechloritecalcitehorn blendebiotitedolomitetotal
    10.813.19.70.718.343.52.41.5100.0
    42.54.720.819.712.3100.0
    38.27.321.23.74.225.4100.0
    Quartzitequartzplagio claseK-feld sparcalciteaugitehorn blendebiotitecordieritepyriteolivineserpentinedolomitetotal
    39.518.723.13.57.37.30.7100.1
    8.16.610.34.64.6tr65.799.9
    50.39.322.010.5tr7.9100.0
    Schistquartzplagio claseK-feld sparmuscovitechloritecalcitemagnetitehorn blendebiotitetotal
    3.747.213.735.399.9
    42.712.29.325.92.13.74.099.9

    Table 3 . Evaluation of Major Bedrocks on the parameters of Aggregate quality assessment.

    Rock typeGraniteGneissPhylliteQuartziteSchist
    Fineness modulusMin.7.357.377.597.267.44
    Max.7.707.797.687.597.67
    Avg.7.557.587.637.467.55
    AbsorptionMin.0.740.410.520.740.87
    Max.1.601.591.641.211.52
    Avg.1.231.261.181.001.17
    Absolute dry densityMin.2.722.562.622.662.69
    Max.2.532.782.822.912.94
    Avg.2.602.632.732.802.82
    Unit weightMin.1.421.461.451.481.55
    Max.1.601.581.571.671.61
    Avg.1.481.501.521.581.57
    Solid contentMin.54.6455.0355.1055.6754.70
    Max.59.6059.7058.6057.4757.84
    Avg.56.7156.7555.8856.5655.91
    PorosityMin.40.4040.3041.4042.5342.16
    Max.45.3644.9744.9044.3345.53
    Avg.43.2943.2544.1243.4444.33
    Resistance of abrasionMin.9.6017.988.8011.8916.76
    Max.71.3450.6819.4733.8419.66
    Avg.29.6626.7513.8722.3018.67
    SoundnessMin.0.300.800.200.700.70
    Max.10.8011.102.006.402.60
    Avg.3.094.161.142.851.80

    KSEEG
    Jun 30, 2024 Vol.57 No.3, pp. 281~352

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download