Econ. Environ. Geol. 2022; 55(5): 447-463
Published online October 31, 2022
https://doi.org/10.9719/EEG.2022.55.5.447
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : *chanlee@kongju.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The lime and clay that used in the construction of the Tomb of King Muryeong and the Royal Tombs in Gongju are auxiliary materials, and are used joint and plaster materials for the wall to play a role of structural support. In this study, the homogeneity between the tombs and material characteristics were interpreted through quantitative analysis of lime and clay. As a result of microtexture and composition analysis, almost the same minerals were identified in each sample groups, and similar characteristics were shown in thermal analysis. Geochemically, it is confirmed that the behavior characteristics are very similar regardless of the tombs. The compositions is also confirmed high homogeneity in the diagrams of CaO-MgO-SiO2, RO2-(RO+R2O) correlations, A-CN-K and ACNK-FM triangles. Therefore, it is interpreted that the clay used for the construction of the tomb complex was supplied from around area, and the raw materials of lime were produced using shell fragments of oyster family based on mainly composed of calcite. It is interpreted that the raw materials of lime were supplied from middens along the west coast of down the Geumgang river in Korean peninsula, but the consideration of the supply site, needs to be cross-validated through stable isotope analysis, use of carbonate rock and reproduction experiments.
Keywords lime and clay, material characteristics, chemical composition, shell fragments, stable isotope
최일규 · 양혜리 · 이찬희*
공주대학교 문화재보존과학과
공주 무령왕릉과 왕릉원의 축조에 사용한 석회와 점토는 부재료로서 벽체의 줄눈재와 미장재로 활용되어 구조적인 보조 역할을 수행하고 있다. 이 연구에서는 석회와 점토에 대한 정량분석을 통해 재료학적 특성과 고분 간의 동질성을 해석하였다. 석회와 점토에 대한 미세조직과 조성분석 결과, 그룹별로 모든 시료에서 거의 동일한 광물이 동정되었으며, 열분석에서도 유사한 열적 특성이 나타났다. 조성으로 볼 때, 고분에 관계없이 지구화학적 거동특성도 매우 유사하였다. 이들의 조성은 CaO-MgO-SiO2 성분계, RO2-(RO+R2O) 상관도, A-CN-K 및 A-CNK-FM 삼각도에서도 높은 동질성이 나타났다. 따라서 왕릉원 축조에 사용한 점토는 인근에서 수급한 것으로 해석되며, 석회의 원료물질은 주로 방해석으로 구성된 굴과의 패각을 활용한 것으로 판단된다. 석회의 원료는 금강 하류의 서해안 일대 패총에서 수급한 것으로 추정할 수 있으나, 공급지 검토는 안정동위원소 분석 및 탄산염암의 사용과 재현실험을 통해 검증할 필요가 있다.
주요어 석회와 점토, 재료학적 특성, 화학조성, 패각, 안정동위원소
Econ. Environ. Geol. 2022; 55(5): 447-463
Published online October 31, 2022 https://doi.org/10.9719/EEG.2022.55.5.447
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Il Kyu Choi, Hye Ri Yang, Chan Hee Lee*
Department of Cultural Heritage Conservation Sciences, Kongju National University, Gongju, 32588, Korea
Correspondence to:*chanlee@kongju.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The lime and clay that used in the construction of the Tomb of King Muryeong and the Royal Tombs in Gongju are auxiliary materials, and are used joint and plaster materials for the wall to play a role of structural support. In this study, the homogeneity between the tombs and material characteristics were interpreted through quantitative analysis of lime and clay. As a result of microtexture and composition analysis, almost the same minerals were identified in each sample groups, and similar characteristics were shown in thermal analysis. Geochemically, it is confirmed that the behavior characteristics are very similar regardless of the tombs. The compositions is also confirmed high homogeneity in the diagrams of CaO-MgO-SiO2, RO2-(RO+R2O) correlations, A-CN-K and ACNK-FM triangles. Therefore, it is interpreted that the clay used for the construction of the tomb complex was supplied from around area, and the raw materials of lime were produced using shell fragments of oyster family based on mainly composed of calcite. It is interpreted that the raw materials of lime were supplied from middens along the west coast of down the Geumgang river in Korean peninsula, but the consideration of the supply site, needs to be cross-validated through stable isotope analysis, use of carbonate rock and reproduction experiments.
Keywords lime and clay, material characteristics, chemical composition, shell fragments, stable isotope
최일규 · 양혜리 · 이찬희*
공주대학교 문화재보존과학과
공주 무령왕릉과 왕릉원의 축조에 사용한 석회와 점토는 부재료로서 벽체의 줄눈재와 미장재로 활용되어 구조적인 보조 역할을 수행하고 있다. 이 연구에서는 석회와 점토에 대한 정량분석을 통해 재료학적 특성과 고분 간의 동질성을 해석하였다. 석회와 점토에 대한 미세조직과 조성분석 결과, 그룹별로 모든 시료에서 거의 동일한 광물이 동정되었으며, 열분석에서도 유사한 열적 특성이 나타났다. 조성으로 볼 때, 고분에 관계없이 지구화학적 거동특성도 매우 유사하였다. 이들의 조성은 CaO-MgO-SiO2 성분계, RO2-(RO+R2O) 상관도, A-CN-K 및 A-CNK-FM 삼각도에서도 높은 동질성이 나타났다. 따라서 왕릉원 축조에 사용한 점토는 인근에서 수급한 것으로 해석되며, 석회의 원료물질은 주로 방해석으로 구성된 굴과의 패각을 활용한 것으로 판단된다. 석회의 원료는 금강 하류의 서해안 일대 패총에서 수급한 것으로 추정할 수 있으나, 공급지 검토는 안정동위원소 분석 및 탄산염암의 사용과 재현실험을 통해 검증할 필요가 있다.
주요어 석회와 점토, 재료학적 특성, 화학조성, 패각, 안정동위원소
Table 1 . Analytical samples of lime and clay.
Type | Location | Sample No. | Use | |
---|---|---|---|---|
Lime | Tomb No. 5 | Southern wall | 5-SL | Plaster Material |
Northern wall | 5-NL | |||
Tomb No. 6 | Western wall | 6-WL | Joint Material | |
Aisle | 6-AL | |||
Tomb of King Muryeong | Between upper brick | M-TL | ||
Eastern wall | M-EL | Joint Material | ||
Between floor brick | M-FL | |||
Clay | Tomb No. 5 | Floor | 5-FC | Floor Material |
Western wall | 5-WC | Joint Material | ||
Western ceiling | 5-TC | Joint Material | ||
Tomb No. 6 | Floor | 6-FC | Joint Material | |
Aisle | 6-BC | |||
Tomb of King Muryeong | Eastern wall | M-EC | ||
Western wall | M-WC | Joint Material | ||
Southern wall | M-SC |
Table 2 . Chromaticity of lime and clay samples. Sample numbers are the same as those of Table 1.
Materials | Sample No. | Chromaticity | |||
---|---|---|---|---|---|
L* | a* | b* | ΔE* | ||
Lime | 5-SL | 61.86 | 6.04 | 18.33 | 16.51 |
5-NL | 74.68 | 5.83 | 18.63 | 5.30 | |
6-WL | 82.51 | 3.42 | 13.45 | 4.89 | |
6-AL | 77.24 | 2.53 | 12.89 | 2.47 | |
M-TL | 87.74 | 1.79 | 10.55 | 10.99 | |
M-EL | 86.81 | 1.86 | 12.09 | 9.58 | |
M-FL | 74.18 | 4.91 | 18.58 | 5.31 | |
Clay | 5-FC | 60.61 | 4.52 | 15.42 | 9.66 |
5-WC | 53.92 | 12.07 | 20.59 | 3.13 | |
5-TC | 47.24 | 17.16 | 24.82 | 11.51 | |
6-FC | 56.10 | 3.00 | 14.04 | 10.08 | |
6-BC | 53.74 | 9.84 | 21.75 | 1.51 | |
M-EC | 48.08 | 8.24 | 21.64 | 7.23 | |
M-WC | 59.75 | 12.45 | 32.14 | 11.75 | |
M-SC | 62.19 | 8.36 | 23.39 | 7.27 |
Table 3 . Chemical compositions (wt.%) by SEM-EDS of lime and clay samples. Sample numbers are the same as those of Table 1.
Type | Tombs | No. | SiO2 | Al2O3 | TiO2 | FeO | CaO | MgO | Na2O | K2O | C |
---|---|---|---|---|---|---|---|---|---|---|---|
Lime | No. 5 | 1 | 6.64 | 5.96 | - | - | 87.40 | - | - | - | - |
2 | 11.53 | - | - | - | 88.47 | - | - | - | - | ||
No. 6 | 3 | 9.92 | - | - | 84.00 | - | 6.08 | ||||
4 | - | - | - | - | 88.10 | 1.77 | - | - | 10.13 | ||
5 | - | - | - | - | 91.46 | - | - | - | 8.54 | ||
King Muryeong | 6 | 39.77 | 7.50 | - | 5.31 | 24.74 | 5.84 | - | - | 16.83 | |
7 | 3.41 | - | - | - | 76.91 | - | - | - | 19.68 | ||
8 | 2.79 | - | - | - | 81.72 | - | - | - | 17.64 | ||
9 | 2.33 | - | - | - | 80.02 | - | - | - | 15.48 | ||
Clay | No. 5 | 10 | 40.34 | 27.22 | - | 12.52 | - | 6.33 | - | 3.61 | 9.98 |
11 | 44.36 | 27.61 | - | 12.63 | - | 3.58 | - | 4.02 | 7.80 | ||
12 | 11.94 | 12.15 | - | 65.71 | - | - | 5.55 | - | 4.65 | ||
No. 6 | 13 | 15.54 | 44.54 | 1.02 | 23.73 | - | 3.88 | - | - | 11.30 | |
14 | 23.09 | 44.67 | - | 15.74 | - | 2.64 | - | - | 13.86 | ||
15 | 19.59 | 45.96 | - | 20.44 | - | 2.48 | - | - | 11.52 | ||
16 | 25.17 | 43.88 | - | 13.79 | - | 1.37 | - | 1.05 | 14.73 | ||
17 | 26.12 | 43.79 | - | 11.78 | - | 1.42 | - | 1.45 | 15.44 | ||
18 | 25.01 | 42.91 | 0.87 | 14.38 | - | 1.57 | - | 1.28 | 13.98 | ||
King Muryeong | 19 | 31.11 | 11.60 | - | 46.56 | - | 0.64 | - | - | 9.25 | |
20 | 42.08 | 5.27 | - | 14.07 | 16.95 | 15.21 | - | - | 6.42 | ||
21 | 32.53 | 23.77 | - | 30.07 | - | 2.37 | 2.47 | 1.90 | 6.89 | ||
22 | 29.37 | 23.41 | - | 34.30 | - | 1.81 | 2.28 | 2.10 | 6.73 | ||
23 | 34.27 | 16.99 | - | 36.75 | - | 0.66 | - | 2.82 | 8.51 |
Table 4 . Compositions of major elements (wt.%), some trace and rare earth elements (ppm) for lime and clay samples. Sample numbers are the same as those of Table 1.
No. | Lime | Clay | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5-SL | 5-NL | 6-WL | 6-AL | M-TL | M-EL | M-FL | 5-FC | 5-WC | 5-TC | 6-BC | 6-FC | M-EC | M-WC | M-SC | |
SiO2 | 11.19 | 20.08 | 9.53 | 8.68 | 8.35 | 9.26 | 23.63 | 67.88 | 52.76 | 62.65 | 61.00 | 49.03 | 60.42 | 60.86 | 60.61 |
Al2O3 | 2.94 | 5.84 | 2.01 | 2.09 | 2.02 | 2.46 | 4.80 | 13.99 | 19.89 | 14.00 | 16.25 | 12.38 | 18.03 | 17.82 | 17.60 |
Fe2O3 | 1.29 | 1.50 | 1.29 | 1.23 | 1.27 | 1.57 | 1.33 | 3.96 | 6.27 | 4.96 | 5.13 | 4.88 | 6.09 | 6.04 | 5.78 |
MnO | 0.03 | 0.03 | 0.03 | 0.03 | 0.04 | 0.04 | 0.04 | 0.07 | 0.10 | 0.08 | 0.07 | 0.09 | 0.04 | 0.04 | 0.04 |
MgO | 1.45 | 1.02 | 1.63 | 1.98 | 3.17 | 2.43 | 0.83 | 1.56 | 2.02 | 4.05 | 0.94 | 1.58 | 1.01 | 0.93 | 1.08 |
CaO | 43.36 | 37.52 | 44.25 | 45.08 | 44.15 | 44.56 | 36.39 | 1.30 | 1.28 | 2.82 | 1.45 | 11.91 | 0.39 | 0.36 | 0.66 |
Na2O | 0.14 | 0.19 | 0.10 | 0.13 | 0.08 | 0.09 | 0.52 | 0.69 | 0.29 | 0.79 | 0.44 | 0.55 | 0.71 | 0.74 | 0.75 |
K2O | 0.38 | 1.11 | 0.27 | 0.22 | 0.15 | 0.17 | 1.31 | 2.43 | 1.98 | 2.21 | 2.83 | 1.98 | 2.95 | 2.94 | 2.95 |
TiO2 | 0.09 | 0.14 | 0.07 | 0.08 | 0.07 | 0.09 | 0.12 | 0.40 | 0.41 | 0.47 | 0.66 | 0.63 | 0.88 | 0.88 | 0.86 |
P2O5 | 0.06 | 0.04 | 0.06 | 0.06 | 0.07 | 0.07 | 0.06 | 0.05 | 0.11 | 0.03 | 0.07 | 0.11 | 0.04 | 0.03 | 0.02 |
LOI | 38.93 | 33.22 | 40.12 | 40.74 | 40.58 | 39.7 | 31.65 | 7.73 | 14.17 | 6.86 | 9.50 | 17.15 | 8.34 | 8.26 | 8.29 |
Total | 99.85 | 100.70 | 99.36 | 100.30 | 99.96 | 100.40 | 100.70 | 100.10 | 99.27 | 98.92 | 98.34 | 100.30 | 98.89 | 98.88 | 98.64 |
Ba | 220 | 391 | 96 | 92 | 74 | 89 | 335 | 753 | 532 | 743 | 539 | 630 | 621 | 661 | 655 |
Be | 1 | 1 | <1 | <1 | <1 | <1 | <1 | 4 | 4 | 3 | 3 | 2 | 3 | 3 | 3 |
Cd | 0.9 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1.0 | <0.5 | <0.5 | <0.5 | 0.6 | <0.5 | <0.5 | <0.5 | <0.5 |
Co | 3 | 4 | 3 | <1 | 3 | 4 | 8 | 11 | 24 | 17 | 14 | 13 | 9 | 10 | 11 |
Cr | 14 | 20 | 10 | 12 | 8 | 10 | 34 | 52 | 71 | 58 | 74 | 99 | 74 | 75 | 76 |
Cu | 43 | 9 | 18 | 54 | 19 | 13 | 405 | 357 | 88 | 85 | 164 | 217 | 23 | 22 | 62 |
Hf | <0.5 | 1.8 | <0.5 | <0.5 | <0.5 | <0.5 | 0.9 | 5.9 | 4.8 | 3.7 | 6.5 | 5.7 | 5.9 | 6.2 | 6.4 |
Mo | <2 | <2 | <2 | <2 | <2 | <2 | <4 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
Ni | 7 | 8 | 4 | 4 | 4 | 5 | 12 | 29 | 64 | 34 | 34 | 41 | 28 | 26 | 29 |
Pb | 12 | 8 | 13 | <5 | <5 | 5 | 80 | 37 | 25 | 15 | 47 | 462 | 27 | 27 | 30 |
Rb | <20 | 30 | <20 | <20 | <20 | <20 | <20 | 90 | 120 | 90 | 60 | 80 | 180 | 120 | 160 |
Sc | 2.0 | 3.1 | 1.9 | 2.1 | 1.7 | 2.1 | 2.3 | 7.8 | 11.0 | 8.6 | 11.4 | 10.4 | 13.9 | 13.2 | 13.5 |
Sr | 313 | 135 | 292 | 358 | 283 | 307 | 299 | 74 | 32 | 93 | 57 | 180 | 73 | 76 | 78 |
Th | 3.2 | 7.8 | 2.1 | 2.4 | 2.0 | 2.3 | 5.8 | 17.5 | 30.1 | 16.0 | 19.8 | 13.8 | 19.0 | 17.4 | 18.1 |
V | 11 | 15 | 22 | 17 | 14 | 13 | 17 | 48 | 64 | 55 | 80 | 88 | 108 | 98 | 100 |
Y | 6 | 7 | 8 | 7 | 6 | 7 | 7 | 22 | 26 | 17 | 20 | 23 | 24 | 23 | 24 |
Zn | 15 | 20 | 9 | 10 | 10 | 14 | 40 | 81 | 78 | 73 | 84 | 133 | 83 | 78 | 89 |
Zr | 25 | 44 | 24 | 23 | 17 | 18 | 50 | 200 | 145 | 136 | 219 | 196 | 211 | 202 | 201 |
La | 11.2 | 23.5 | 9.0 | 10.2 | 7.8 | 8.8 | 20.1 | 55.5 | 54.7 | 65.6 | 49.1 | 47.7 | 48.1 | 48.4 | 51.2 |
Ce | 15 | 36 | 14 | 14 | 13 | 16 | 30 | 72 | 95 | 90 | 103 | 87 | 88 | 86 | 94 |
Nd | 8 | 13 | <5 | 10 | <5 | <5 | 11 | 34 | 41 | 38 | 31 | 34 | 32 | 29 | 30 |
Sm | 1.5 | 2.4 | 1.3 | 1.4 | 1.0 | 1.5 | 2.0 | 6.3 | 7.5 | 6.4 | 6.3 | 6.2 | 6.8 | 6.5 | 7.1 |
Eu | 0.3 | 0.4 | 0.3 | 0.3 | 0.3 | 0.3 | 0.4 | 1.5 | 1.6 | 1.1 | 1.3 | 0.9 | 1.4 | 1.2 | 1.5 |
Tb | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 | <0.5 |
Yb | 0.6 | 0.5 | 0.4 | 0.4 | 0.2 | 0.7 | 0.3 | 1.9 | 2.5 | 1.8 | 2.5 | 2.4 | 2.6 | 2.6 | 2.4 |
Lu | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | <0.05 | 0.19 | 0.22 | 0.16 | 0.21 | 0.16 | 0.29 | 0.25 | 0.31 |
So Jin Kim, Young Do Kim
Econ. Environ. Geol. 2024; 57(3): 343-352Ji Hyun Yoo, Yu Bin Ahn, Myoung Nam Kim, Myeong Seong Lee
Econ. Environ. Geol. 2023; 56(6): 697-714Chang Seong Kim, Ji Su Go, Seon-Gyu Choi and Sang-Tae Kim
2014; 47(4): 317-333