Research Paper

Split Viewer

Econ. Environ. Geol. 2022; 55(4): 367-376

Published online August 30, 2022

https://doi.org/10.9719/EEG.2022.55.4.367

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid

Han Gyeol Jeon, Kyoung-Woong Kim*

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea

Received: August 5, 2022; Revised: August 24, 2022; Accepted: August 25, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

One of biopolymer, β-glucan (BG) chains were crosslinked by citric acid under the heating condition for the adsorption of Pb and Cu ions in the aqueous solution. The variation of functional groups on BG itself and crosslinked β-glucan (CBG) with their surface adsorption characteristics were investigated by FTIR and SEM-EDX. Adsorption kinetic results showed that adsorption of Pb and Cu onto the CBG followed the pseudo-second-order kinetic model and intra-particle diffusion model. The Langmuir adsorption model was depicted better adsorption characteristics than the Freundlich model. The adsorption capacities of Pb and Cu onto the CBG estimated by the Langmuir model were 59.70 and 23.44 mg/g, respectively. This study suggested that CBG may act as an eco-friendly adsorbent for the adsorption of Pb and Cu in the aqueous solution.

Keywords biopolymer, β-glucan, adsorption, Pb and Cu, crosslinking

베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착

전한결 · 김경웅*

광주과학기술원 지구환경공학부

요 약

본 연구에서는 바이오폴리머의 일종인 베타글루칸을 구연산과 교차결합하여 수용액 내에서 불용성인 흡착제(crosslinked βglucan, CBG)롤 제조하였으며, FTIR과 SEM-EDX를 이용하여 CBG의 특성평가와 납과 구리 흡착특성을 파악하기 위한 pH에 따른 흡착량 변화, 흡착속도, 등온흡착 실험을 진행하였다. 특성평가 결과, 베타글루칸과 구연산의 교차결합 메커니즘을 파악하였으며, CBG 표면에서의 납과 구리 흡착을 확인하였다. 수용액 pH에 의한 흡착량 변화 실험에서는 pH 6에서 가장 높은 납과 구리 흡착량을 보였으며, pH 3이하에서는 급격한 감소를 보였다. 또한 흡착속도 실험 결과 CBG에 의한 납과 구리 흡착은 유사 2차 반응속도식과 내부확산식을 따르는 것을 확인하였고, 등온흡착 실험에서는 Langmuir식을 따라 납과 구리 최대흡착량이 각각 59.70, 23.44 mg/g임을 확인하였다. 본 연구에서는 구연산을 이용하여 베타글루칸을 수용액 내 흡착제로 이용하는 방법을 제시하고자 하였으며, 연구결과에 따라 CBG는향후 친환경적인 중금속 흡착제로서의 적용이 가능할 것으로 판단된다.

주요어 바이오폴리머, 베타글루칸, 흡착, 납과 구리, 교차결합

Article

Research Paper

Econ. Environ. Geol. 2022; 55(4): 367-376

Published online August 30, 2022 https://doi.org/10.9719/EEG.2022.55.4.367

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Adsorption of Pb and Cu from Aqueous Solution by β-Glucan Crosslinked with Citric Acid

Han Gyeol Jeon, Kyoung-Woong Kim*

School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea

Received: August 5, 2022; Revised: August 24, 2022; Accepted: August 25, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

One of biopolymer, β-glucan (BG) chains were crosslinked by citric acid under the heating condition for the adsorption of Pb and Cu ions in the aqueous solution. The variation of functional groups on BG itself and crosslinked β-glucan (CBG) with their surface adsorption characteristics were investigated by FTIR and SEM-EDX. Adsorption kinetic results showed that adsorption of Pb and Cu onto the CBG followed the pseudo-second-order kinetic model and intra-particle diffusion model. The Langmuir adsorption model was depicted better adsorption characteristics than the Freundlich model. The adsorption capacities of Pb and Cu onto the CBG estimated by the Langmuir model were 59.70 and 23.44 mg/g, respectively. This study suggested that CBG may act as an eco-friendly adsorbent for the adsorption of Pb and Cu in the aqueous solution.

Keywords biopolymer, β-glucan, adsorption, Pb and Cu, crosslinking

베타글루칸과 구연산의 교차결합 바이오 폴리머 흡착제를 이용한 수용액내 납과 구리의 흡착

전한결 · 김경웅*

광주과학기술원 지구환경공학부

Received: August 5, 2022; Revised: August 24, 2022; Accepted: August 25, 2022

요 약

본 연구에서는 바이오폴리머의 일종인 베타글루칸을 구연산과 교차결합하여 수용액 내에서 불용성인 흡착제(crosslinked βglucan, CBG)롤 제조하였으며, FTIR과 SEM-EDX를 이용하여 CBG의 특성평가와 납과 구리 흡착특성을 파악하기 위한 pH에 따른 흡착량 변화, 흡착속도, 등온흡착 실험을 진행하였다. 특성평가 결과, 베타글루칸과 구연산의 교차결합 메커니즘을 파악하였으며, CBG 표면에서의 납과 구리 흡착을 확인하였다. 수용액 pH에 의한 흡착량 변화 실험에서는 pH 6에서 가장 높은 납과 구리 흡착량을 보였으며, pH 3이하에서는 급격한 감소를 보였다. 또한 흡착속도 실험 결과 CBG에 의한 납과 구리 흡착은 유사 2차 반응속도식과 내부확산식을 따르는 것을 확인하였고, 등온흡착 실험에서는 Langmuir식을 따라 납과 구리 최대흡착량이 각각 59.70, 23.44 mg/g임을 확인하였다. 본 연구에서는 구연산을 이용하여 베타글루칸을 수용액 내 흡착제로 이용하는 방법을 제시하고자 하였으며, 연구결과에 따라 CBG는향후 친환경적인 중금속 흡착제로서의 적용이 가능할 것으로 판단된다.

주요어 바이오폴리머, 베타글루칸, 흡착, 납과 구리, 교차결합

    Fig 1.

    Figure 1.Images of (a) β-glucan (BG) and (b) crosslinked β-glucan (CBG).
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 2.

    Figure 2.FTIR spectra of BG and CBG.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 3.

    Figure 3.Reaction scheme of citric acid under the heating condition with β-glucan, R represents β-glucan (Hashem et al., 2005).
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 4.

    Figure 4.SEM images of (a) BG and (b) CBG and EDX spectra of CBG after (c) Pb adsorption and (b) Cu adsorption.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 5.

    Figure 5.Effect of initial solution pH on (a) Pb adsorption and (b) Cu adsorption onto CBG.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 6.

    Figure 6.Adsorption kinetic simulation for absorbed (a) Pb and (b) Cu onto CBG.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 7.

    Figure 7.Intra particle diffusion plots for absorbed (a) Pb and (b) Cu onto CBG.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Fig 8.

    Figure 8.Adsorption isotherm simulation for absorbed (a) Pb and (b) Cu at different metal concentrations onto CBG.
    Economic and Environmental Geology 2022; 55: 367-376https://doi.org/10.9719/EEG.2022.55.4.367

    Table 1 . Kinetic parameters of Pb and Cu onto CBG derived from kinetic models..

    ParametersAdsorbates
    PbCu
    Pseudo 1st-orderqe, cal (mg/g)64.1616.77
    K1 (1/min)0.0360.063
    R20.9880.959
    Pseudo 2st-orderqe, cal (mg/g)70.73118.066
    K2 (1/min)0.00060.005
    R20.9920.986
    Intra-particle diffusionKid (mg/g·min0.5)8.0931.753
    B-5.0062.628
    R20.9860.920

    Table 2 . Isotherm parameters of Pb and Cu onto CBG derived from isotherm models.

    ParametersAdsorbates
    PbCu
    FreundlichKF (mg/g)/(mg/L)n27.72511.618
    n0.1590.142
    R20.9310.866
    LangmuirKL (L/mg)0.9730.616
    qm (mg/g)59.7023.44
    R20.9680.934
    Partition coefficientRL0.001~0.2910.001~0.362

    Table 3 . Maximum adsorption capacities of Pb and Cu ions by different absorbents.

    Adsorbentsqm (mg/g)
    PbCu
    Porous starch xanthate109.1Ma et al.(2015)
    Carboxymethyl sago starch-acid hydrogel109.921.9Basri et al.(2016)
    Oxidized starch nanoparticles70.5863.15Liu et al.(2018)
    Ethylene diamine crosslinked starch8.1Dong et al.(2010)
    Chitosan/poly(vinyl) alcohol thin adsorptive membrane21.6Salehi et al.(2012)
    Chitosan modified by EGTA103.5Zhao et al.(2013)
    Sodium Alginate modified by Titania-Coated Silica32.522.4Kołodyńska et al.(2018)
    β-glucan crosslinked with citric acid59.7023.44This study

    KSEEG
    Jun 30, 2024 Vol.57 No.3, pp. 281~352

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download