Econ. Environ. Geol. 2022; 55(4): 339-352
Published online August 30, 2022
https://doi.org/10.9719/EEG.2022.55.4.339
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
As environmental criteria items are increased or strengthened, cases of heavy metal contamination by geogenic origin are increasing, and the need to distinguish between natural and anthropogenic origins in soil or groundwater exceeding the standard is increasing. In this study, geochemical occurrences of geogenic heavy metals were identified through statistical processing of the national geochemical map data and evaluation of geochemical characteristics of regions with high geoaccumulation indices. Cobalt, Cr, Cu, Ni, Pb, V, and Zn were targeted for which the national geochemical maps were prepared, and Co, Cr, Ni, and V derived from ultrabasic or ultramafic rocks were classified as factor 1. Copper, Pb and Zn of non-ferrous sulfide origin were classified as factor 2. In particular, enrichment of heavy metals by factor 1 occurs mainly in the serpentine distribution areas of the Chungcheong region, and there is a risk of contamination in neighboring areas. In the case of factor 2, geogenic occurrence is concerned not only in non-ferrous metal mineralization areas such as Taebacksan and Gyeongnam mineralization zones, but also in Au-Ag mineralization areas distributed nationwide.
Keywords heavy metals, geogenic origin, ultrabasic rocks, non-ferrous sulfides, geochemical map
안주성 · 염승준* · 조용찬 · 임길재 · 지상우 · 이정화 · 이평구 · 이정호 · 신성천
한국지질자원연구원
환경 기준 항목이 증가하거나 강화되면서 지질기원에 의한 중금속 오염사례가 증가하고 있으며, 토양이나 지하수의 기준치 초과양상에서 자연적 기원인지 인위적 기원인지 구분해야 할 필요성이 높아지고 있다. 본 연구에서는 전국 지화학도 자료에 대한 통계적 처리와 높은 지질축적지수 분포 지역의 지화학적 특성을 평가하여 중금속 원소들의 지질기원 발생요인을 규명하였다. 지화학도가 작성된 Co, Cr, Cu, Ni, Pb, V, Zn 등을 대상으로 하였으며, 초염기성암 또는 초고철질암에서 기원한 Co, Cr, Ni, V이 요인 1로, 비철금속 황화광물에 기인한 Cu, Pb, Zn가 요인 2로 구분되어졌다. 특히 충청지역의 사문암체 분포지역에서 요인 1에 의한 중금속 지질기원 부화현상이 주로 나타나며 이를 포함한 인근지역에서도 오염 위험이 있다. 요인 2의 경우 태백산 및 경남 광화대 등지의 비철금속 광화지역 뿐만 아니라 국내의 전반적인 금-은 광화대 지역에서도 지질기원 부화현상이 우려된다.
주요어 중금속, 지질기원, 초염기성암, 비철금속 황화광물, 지화학도
Econ. Environ. Geol. 2022; 55(4): 339-352
Published online August 30, 2022 https://doi.org/10.9719/EEG.2022.55.4.339
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Joo Sung Ahn, Seung-Jun Youm*, Yong-Chan Cho, Gil-Jae Yim, Sang-Woo Ji, Jung-Hwa Lee, Pyeong-Koo Lee, Jeong-Ho Lee, Seong-Cheon Shin
Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
As environmental criteria items are increased or strengthened, cases of heavy metal contamination by geogenic origin are increasing, and the need to distinguish between natural and anthropogenic origins in soil or groundwater exceeding the standard is increasing. In this study, geochemical occurrences of geogenic heavy metals were identified through statistical processing of the national geochemical map data and evaluation of geochemical characteristics of regions with high geoaccumulation indices. Cobalt, Cr, Cu, Ni, Pb, V, and Zn were targeted for which the national geochemical maps were prepared, and Co, Cr, Ni, and V derived from ultrabasic or ultramafic rocks were classified as factor 1. Copper, Pb and Zn of non-ferrous sulfide origin were classified as factor 2. In particular, enrichment of heavy metals by factor 1 occurs mainly in the serpentine distribution areas of the Chungcheong region, and there is a risk of contamination in neighboring areas. In the case of factor 2, geogenic occurrence is concerned not only in non-ferrous metal mineralization areas such as Taebacksan and Gyeongnam mineralization zones, but also in Au-Ag mineralization areas distributed nationwide.
Keywords heavy metals, geogenic origin, ultrabasic rocks, non-ferrous sulfides, geochemical map
안주성 · 염승준* · 조용찬 · 임길재 · 지상우 · 이정화 · 이평구 · 이정호 · 신성천
한국지질자원연구원
환경 기준 항목이 증가하거나 강화되면서 지질기원에 의한 중금속 오염사례가 증가하고 있으며, 토양이나 지하수의 기준치 초과양상에서 자연적 기원인지 인위적 기원인지 구분해야 할 필요성이 높아지고 있다. 본 연구에서는 전국 지화학도 자료에 대한 통계적 처리와 높은 지질축적지수 분포 지역의 지화학적 특성을 평가하여 중금속 원소들의 지질기원 발생요인을 규명하였다. 지화학도가 작성된 Co, Cr, Cu, Ni, Pb, V, Zn 등을 대상으로 하였으며, 초염기성암 또는 초고철질암에서 기원한 Co, Cr, Ni, V이 요인 1로, 비철금속 황화광물에 기인한 Cu, Pb, Zn가 요인 2로 구분되어졌다. 특히 충청지역의 사문암체 분포지역에서 요인 1에 의한 중금속 지질기원 부화현상이 주로 나타나며 이를 포함한 인근지역에서도 오염 위험이 있다. 요인 2의 경우 태백산 및 경남 광화대 등지의 비철금속 광화지역 뿐만 아니라 국내의 전반적인 금-은 광화대 지역에서도 지질기원 부화현상이 우려된다.
주요어 중금속, 지질기원, 초염기성암, 비철금속 황화광물, 지화학도
Table 1 . Selected element concentrations of the Geochemical Atlas of Korea (KIGAM, 2007; mg/kg except for the major component in %).
n | min | Q25 | mean | median | Q75 | Q90 | max | std | Upper Continental Crust* | |
---|---|---|---|---|---|---|---|---|---|---|
CaO | 23,542 | 0.11 | 0.73 | 1.66 | 1.18 | 1.89 | 2.99 | 53.1 | 2.23 | 5.5 |
Fe2O3 | 23,543 | 0.30 | 4.48 | 5.94 | 5.71 | 7.13 | 8.49 | 51.0 | 2.18 | 6.28 |
K2O | 23,543 | 0.08 | 2.60 | 3.08 | 3.04 | 3.50 | 4.01 | 7.77 | 0.74 | 2.4 |
MgO | 23,543 | 0.04 | 0.91 | 1.51 | 1.33 | 1.82 | 2.42 | 18.0 | 1.03 | 3.7 |
MnO | 23,539 | 0.01 | 0.08 | 0.12 | 0.10 | 0.13 | 0.18 | 7.77 | 0.11 | 0.10 |
TiO2 | 23,541 | 0.05 | 0.68 | 0.85 | 0.81 | 0.95 | 1.15 | 8.96 | 0.33 | 0.68 |
Co | 15,142 | 0.19 | 9.01 | 14.1 | 13.1 | 17.5 | 22.6 | 337 | 8.48 | 11.6 |
Cr | 15,141 | 1.53 | 46.0 | 83.0 | 71.6 | 104 | 140 | 1,500 | 62.9 | 35 |
Cu | 23,502 | 1.00 | 16.6 | 28.0 | 23.1 | 32.5 | 45.0 | 2,100 | 29.2 | 14.3 |
Li | 23,546 | 4.94 | 31.0 | 47.8 | 42.7 | 58.0 | 76.6 | 574 | 25.4 | 22 |
Ni | 23,465 | 0.29 | 14.8 | 24.6 | 21.4 | 31.0 | 42.0 | 492 | 15.9 | 18.6 |
Pb | 23,415 | 5.20 | 21.6 | 27.2 | 26.5 | 31.0 | 36.0 | 1,360 | 15.2 | 17 |
V | 23,548 | 2.10 | 49.0 | 71.5 | 66.8 | 86.0 | 110 | 1,000 | 36.1 | 53 |
Zn | 15,139 | 2.11 | 78.5 | 139 | 107 | 149 | 212 | 21,100 | 335 | 52 |
n: number of samples; min: minimum; max: maximum; Q25, Q75, and Q90: 25th, 75th, and 90th percentiles of the data set, respectively; std: standard deviation;.
*Wedepohl (1995).
Table 2 . Pearson’s correlation between the selected elements.
CaO Fe2O3 | K2O | MgO | MnO | TiO2 | Co | Cr | Cu | Li | Ni | Pb | V | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fe2O3 | .127** | ||||||||||||
K2O | -.246** | -.335** | |||||||||||
MgO | .483** | .431** | -.314** | ||||||||||
MnO | .102** | .284** | -.140** | .092** | |||||||||
TiO2 | .052** | .660** | -.291** | .268** | .143** | ||||||||
Co | .101** | .565** | -.288** | .405** | .212** | .359** | |||||||
Cr | .021** | .346** | -.156** | .420** | .010 | .216** | .514** | ||||||
Cu | .046** | .205** | -.023** | .143** | .129** | .104** | .164** | .120** | |||||
Li | -.042** | .036** | .153** | .045** | .009 | .014* | .056** | -.010 | .105** | ||||
Ni | .013* | .375** | -.097** | .418** | .055** | .218** | .481** | .604** | .244** | .098** | |||
Pb | .050** | .119** | .053** | .033** | .126** | .016* | .058** | .023** | .203** | .037** | .106** | ||
V | .093** | .688** | -.376** | .343** | .150** | .562** | .423** | .267** | .222** | .033** | .362** | .083** | |
Zn | .095** | .121** | -.046** | .032** | .396** | -.005 | .075** | .009 | .163** | .018* | .016 | .573** | .020* |
** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).
Bold values represent significant correlations..
Table 3 . Results of the principal component analysis on the selected elements.
Factor-1 | Factor-2 | Factor-3 | |
---|---|---|---|
CaO | .175 | .164 | .556 |
Fe2O3 | .761 | .195 | .284 |
K2O | -.363 | .020 | -.628 |
MgO | .657 | .039 | .270 |
MnO | .096 | .555 | .300 |
TiO2 | .582 | .007 | .334 |
Co | .750 | .102 | .033 |
Cr | .715 | -.063 | -.263 |
Cu | .309 | .355 | -.242 |
Li | .103 | .096 | -.376 |
Ni | .752 | .041 | -.349 |
Pb | .030 | .774 | -.178 |
V | .695 | .080 | .230 |
Zn | -.038 | .877 | .044 |
Eigen value | 3.999 | 1.784 | 1.405 |
Explained variance (%) | 28.563 | 12.741 | 10.036 |
Explained cumulative variance (%) | 28.563 | 41.304 | 51.340 |
Extraction method : principal component analysis.
Rotation method : Varimax with Kaiser normalization.
Bold values represent dominant elements in each factor..
Table 4 . Samples with greater than 2.0 of Igeo_averaged for the Factor-1 elements.
Sample ID | Address | Igeo_averaged |
---|---|---|
YS92CN | Chugye-ri, Yugu-eup, Gongju-si | 2.751 |
YS93CN | Chugye-ri, Yugu-eup, Gongju-si | 2.646 |
YW156GN | Cheonsang-ri, Beomseo-eup, Ulju-gun | 2.434 |
SR106CB | Ungyo-ri, Cheongcheon-myeon, Goesan-gun | 2.400 |
BN169JN | Eundeok-ri, Gyeombaek-myeon, Boseong-gun | 2.304 |
BE24CB | Songpyeong-ri, Hoein-myeon, Boeun-gun | 2.264 |
HS97CN | Cheonggwang-ri, Guhang-myeon, Hongseong-gun | 2.178 |
JW75CN | Donghae-ri, Yugu-eup, Gongju-si | 2.112 |
Igeo_averaged = [Igeo_Co + Igeo_Cr + Igeo_Ni + Igeo_V]/4.
Table 5 . Samples with greather than 3.0 of Igeo_averaged for the Factor-2 elements.
Sample ID | Address | Igeo_averaged | Note |
---|---|---|---|
PC88GW | Daesang-ri, Pyeongchang-eup, Pyeongchang-gun | 5.400 | |
CW98GN | Weolgye-ri, Dong-eup, Changwon-si | 5.088 | Guryong mine |
DS96CB | Yulji-ri, Susan-myeon, Jecheon-si | 4.442 | Geumpoong mine |
SC44GB | Galsan-ri, Jaesan-myeon, Bonghwa-gun | 4.391 | Sanmak mine |
AW11GG | Gahak-dong, Gwangmyeong-si | 4.277 | Siheung mine |
GS85CN | Gurae-ri, Boksu-myeon, Geumsan-gun | 4.152 | |
SC45GB | Galsan-ri, Jaesan-myeon, Bonghwa-gun | 3.306 | Janggun, Ilweol, Sanmak, Eunjeom mines |
SC43GB | Galsan-ri, Jaesan-myeon, Bonghwa-gun | 3.282 | |
SC41GB | Galsan-ri, Jaesan-myeon, Bonghwa-gun | 3.239 | |
JS156GW | Punggog-ri, Gagok-myeon, Samcheok-si | 3.173 | 2nd Yeonhwa mine |
JJ132JB | Sin-ri, Sanggwan-myeon, Wanju_Gun | 3.154 |
Igeo_averaged = [Igeo_Cu + Igeo_Pb + Igeo_Zn]/3.
Note : nearest non-ferrous metal mines developed.
Hui-Yeon Kim, Ga-Hyun Park, Yejin Choi, Eui-Jeong Hwang, Daeung Yoon, Jong-Un Lee
Econ. Environ. Geol. 2024; 57(4): 417-429Han-Gyum Kim, Bum-Jun Kim, Myoung-Soo Ko
Econ. Environ. Geol. 2022; 55(6): 717-726Ali Hamdan, Hassan Khozyem, Eman Elbadry
Econ. Environ. Geol. 2021; 54(3): 331-352