Econ. Environ. Geol. 2022; 55(2): 149-169

Published online April 30, 2022

https://doi.org/10.9719/EEG.2022.55.2.149

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

A Review on Coal Exploration in Indonesia: The Cases of Korean Publicprivate Cooperation

Younggi Choi*, Byounghan Kim, Younghyun Song, Gyojin Keum, Junyoung Sung, Changwon Seo

Overseas Exploration Team, Korea Mine Rehabilitation and Mineral Resources Corp., Wonju 26464, South Korea

Correspondence to : *Corresponding author : dudrl@komir.or.kr

Received: April 20, 2022; Revised: April 26, 2022; Accepted: April 26, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Indonesia coal is widely consumed as a major energy source in Asian countries, such as China, India, and Korea. In the paper, the characteristics of the coal-bearing basin and coal deposits in Indonesia are comprehensively reviewed using the exploration data accumulated through the coal exploration projects supported by Korean government subsidy. Cenozoic coal bearing sedimentary basins in Indonesia extensively contain coal deposits and are most productive in East Asia. Properties of coal deposits are variable depending on stratigraphy, depositional histories and tectonics. Eocene coal deposits tend to have thinner coal thickness and fewer numbers of coal seams, but have been major exploration targets due to higher calorific value and good coal quality. Late Oligocene- Early Miocene coal deposits occur in small scales, but are suitable enough for small to medium-sized coal mines. Miocene-Pliocene coal deposits, which are widely distributed across East Kalimantan and Sumatra, are being actively mined by taking advantage of thick coal thickness and abundant reserves in spite of their lower calorific values. The experience of various exploration informs that we need to have an overall understanding on geological conditions for successful coal exploration. The details on coal-bearing basin and coal deposits in Indonesia provided through the paper will be useful data for up-coming exploration activities by Korean companies.

Keywords coal exploration, Indonesia, coal-bearing basin, coal-bearing deposits, coal quality

인도네시아 석탄 탐사에 관한 고찰: 해외자원개발 조사사업 지원사례들

최영기* · 김병한 · 송영현 · 금교진 · 성준영 · 서창원

한국광해광업공단 해외조사팀

요 약

인도네시아 석탄은 중국, 인도, 한국 등 아시아의 주요 국가들에서 에너지원으로써 널리 소비되고 있다. 민간기업들의 높은 수요로 인해, 인도네시아 석탄 탐사사업은 해외자원개발 조사사업을 통해 가장 많이 지원된 국가이자 광종이다. 본 논문에서는 석탄 탐사를 통해 그동안 축적된 탐사자료를 활용하여 인도네시아 함탄분지와 함탄층의 특성에 대해 종합하여 고찰하고자 한다. 인도네시아의 동부 깔리만탄과 수마트라의 신생대 제3기 퇴적분지들은 동아시아에서 가장 생산적인 함탄분지들이다. 주요 탄층의 산출특성은 지질시대별로 차이를 보인다. 깔리만탄의 바리또 분지와 아셈아셈 분지 내 에오세 탄층들은 탄폭은 얇고 부존매수가 적은 경향이 있으나, 고열량의 양호한 탄질로 인하여 일찍부터 주요 탐사대상이었다. 후기 올리고세-전기 마이오세 탄층들은 소규모로 부존하지만, 중소규모의 탄광으로 개발하기에 적합하다. 동부 깔리만탄과 수마트라에 걸쳐 광역적으로 분포하는 마이오세-플라이오세 탄층들은 낮은 열량에도 불구하고, 두꺼운 탄폭과 다량의 부존매수의 이점을 활용하여 활발히 개발되고 있다. 다양한 사례들은 효율적이고 성공적인 탐사를 위해 함탄층의 지질학적 부존여건에 대한 전반적인 이해가 선행될 필요가 있음을 보여준다. 본 논문에서 제공하는 인도네시아 함탄분지와 함탄층에 대한 전문학술정보는 향후 우리나라 기업들의 탐사활동에 유용한 참고자료로 활용될 것으로 기대된다.

주요어 석탄탐사, 인도네시아, 함탄분지, 함탄층, 탄질

Article

Review

Econ. Environ. Geol. 2022; 55(2): 149-169

Published online April 30, 2022 https://doi.org/10.9719/EEG.2022.55.2.149

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

A Review on Coal Exploration in Indonesia: The Cases of Korean Publicprivate Cooperation

Younggi Choi*, Byounghan Kim, Younghyun Song, Gyojin Keum, Junyoung Sung, Changwon Seo

Overseas Exploration Team, Korea Mine Rehabilitation and Mineral Resources Corp., Wonju 26464, South Korea

Correspondence to:*Corresponding author : dudrl@komir.or.kr

Received: April 20, 2022; Revised: April 26, 2022; Accepted: April 26, 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

Indonesia coal is widely consumed as a major energy source in Asian countries, such as China, India, and Korea. In the paper, the characteristics of the coal-bearing basin and coal deposits in Indonesia are comprehensively reviewed using the exploration data accumulated through the coal exploration projects supported by Korean government subsidy. Cenozoic coal bearing sedimentary basins in Indonesia extensively contain coal deposits and are most productive in East Asia. Properties of coal deposits are variable depending on stratigraphy, depositional histories and tectonics. Eocene coal deposits tend to have thinner coal thickness and fewer numbers of coal seams, but have been major exploration targets due to higher calorific value and good coal quality. Late Oligocene- Early Miocene coal deposits occur in small scales, but are suitable enough for small to medium-sized coal mines. Miocene-Pliocene coal deposits, which are widely distributed across East Kalimantan and Sumatra, are being actively mined by taking advantage of thick coal thickness and abundant reserves in spite of their lower calorific values. The experience of various exploration informs that we need to have an overall understanding on geological conditions for successful coal exploration. The details on coal-bearing basin and coal deposits in Indonesia provided through the paper will be useful data for up-coming exploration activities by Korean companies.

Keywords coal exploration, Indonesia, coal-bearing basin, coal-bearing deposits, coal quality

인도네시아 석탄 탐사에 관한 고찰: 해외자원개발 조사사업 지원사례들

최영기* · 김병한 · 송영현 · 금교진 · 성준영 · 서창원

한국광해광업공단 해외조사팀

Received: April 20, 2022; Revised: April 26, 2022; Accepted: April 26, 2022

요 약

인도네시아 석탄은 중국, 인도, 한국 등 아시아의 주요 국가들에서 에너지원으로써 널리 소비되고 있다. 민간기업들의 높은 수요로 인해, 인도네시아 석탄 탐사사업은 해외자원개발 조사사업을 통해 가장 많이 지원된 국가이자 광종이다. 본 논문에서는 석탄 탐사를 통해 그동안 축적된 탐사자료를 활용하여 인도네시아 함탄분지와 함탄층의 특성에 대해 종합하여 고찰하고자 한다. 인도네시아의 동부 깔리만탄과 수마트라의 신생대 제3기 퇴적분지들은 동아시아에서 가장 생산적인 함탄분지들이다. 주요 탄층의 산출특성은 지질시대별로 차이를 보인다. 깔리만탄의 바리또 분지와 아셈아셈 분지 내 에오세 탄층들은 탄폭은 얇고 부존매수가 적은 경향이 있으나, 고열량의 양호한 탄질로 인하여 일찍부터 주요 탐사대상이었다. 후기 올리고세-전기 마이오세 탄층들은 소규모로 부존하지만, 중소규모의 탄광으로 개발하기에 적합하다. 동부 깔리만탄과 수마트라에 걸쳐 광역적으로 분포하는 마이오세-플라이오세 탄층들은 낮은 열량에도 불구하고, 두꺼운 탄폭과 다량의 부존매수의 이점을 활용하여 활발히 개발되고 있다. 다양한 사례들은 효율적이고 성공적인 탐사를 위해 함탄층의 지질학적 부존여건에 대한 전반적인 이해가 선행될 필요가 있음을 보여준다. 본 논문에서 제공하는 인도네시아 함탄분지와 함탄층에 대한 전문학술정보는 향후 우리나라 기업들의 탐사활동에 유용한 참고자료로 활용될 것으로 기대된다.

주요어 석탄탐사, 인도네시아, 함탄분지, 함탄층, 탄질

    Fig 1.

    Figure 1.Map of Cenozoic coal-bearing sedimentary basins of Indonesia. Map sourced from ESDM (Ministry of Energy and Mineral Resources) of Indonesia. Red boxes indicate the areas of Figs. 3 and 9.
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 2.

    Figure 2.Correlation chart of Cenozoic coal-bearing sedimentary basins of Indonesia. Modified from Friederich et al. (2016). CS: Central Sumatra Basin, SS: South Sumatra Basin, BAR: Barito Basin, AA: Asem-Asem Basin, KUT: Kutai Basin.
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 3.

    Figure 3.General geological map of the Eastern Kalimantan showing the locations of the coal exploration projects by Korean companies. The geological map was redrawn from Roe (1957).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 4.

    Figure 4.Generalized stratigraphy of the Barito Basin modified from Witts et al. (2011).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 5.

    Figure 5.Selected photographs of the coal-bearing deposits in Eastern Kalimantan (Barito Basin, Asem-Asem Basin and Kutai Basin) during the coal exploration projects. (a) Tanjung Formation (Tet-9). (b) Warukin Formation (Tmw-1). (c and d) Montalat Formation (Tomm-1). (e) Pulaubalang Formation. (f) Balikpapan Formation. (g and h) Kampungbaru Formation. Note the weakly coalified (lignite rank) coal sample. (i) An example of core logging sheet of the Tanjung Formation (Tet-6).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 6.

    Figure 6.(a) Geological map of the survey area for Tomm-1. (b to d) Contractional deformation in the Karamuan Formation (Tomk-1), cutting up section northly. (b) Geological sketch of the coal pit with structural interpretation. (c and d) Photographs of the highly deformed pit section. Note the faulted coal seam block, fault rocks (cataclasis) and fault related folds. The coal seam block is ranked as semianthracite in the ASTM classification.
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 7.

    Figure 7.(a) Generalized lithostratigraphic column of Cenozoic sediments in the Kutai Basin, with major local and regional tectonic events (from Friederich et al. (2016) and Moore (2015)). (b) Stratigraphic column of Lower Kutai Sub-basin (from Friederich et al. (2016) and Moore et al. (2014)).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 8.

    Figure 8.(a) Regional structural lineament map of the survey area for Tmpb-2. (b) Geological map of the Samarinda Anticlinorium showing the location of the survey area for Tmpb-8/Tmbp-10. The Geological map was redrawn from 1:250,000 scale geology sheets published by the Geological Agency, Indonesia: Balikpapan (Hidayat and Umar, 1994).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 9.

    Figure 9.Simplified geological map of the Sumatra showing the locations of the coal exploration projects by Korean companies. The geological map was redrawn from Crow and Barber (2005).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 10.

    Figure 10.Schematic cross section of Sumatra (Darman and Sidi, 2000).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 11.

    Figure 11.Generalized stratigraphy of the South Sumatra Basin (from Darman and Sidi, 2000).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 12.

    Figure 12.Selected photographs of the coal-bearing deposits in Sumatra (South Sumatra Basin and Bengkulu Basin) during the coal exploration projects. (a and b) Muara Enim Formation (Tmpm-8 and Tmpm-14). Man for scale. (c and d) Lemau Formation (Tml-1 and Tml-3). (e) An example of core logging sheet of the Muara Enim Formation (Tmpm-11). Note the very thick coal occurrence (apparent thickness).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 13.

    Figure 13.(a and c) Geological maps of the survey areas for Tmpm-8 and Tml-2 respectively. (b) Outcrop photograph of the geological boundary between andesite (Qpva) and Muara Enim Formation.
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Fig 14.

    Figure 14.Generalized stratigraphy of the Bengkulu Basin (from Darman and Sidi, 2000).
    Economic and Environmental Geology 2022; 55: 149-169https://doi.org/10.9719/EEG.2022.55.2.149

    Table 1 . Summary of coal quality, coal classification and occurrence.

    codenAverage coal qualityASTM classificationOccurrence
    TM (ar)IM (adb)AC (adb)VM (adb)FC (adb)TS (adb)CV (adb)BasinFormationThickness
    (%)(%)(%)(%)(%)(%)(kcal/kg)(m)
    Tet-1156.54.83.342.349.61.327359High volatile B bituminous coalBaritoTanjung0.5 - 5.0
    Tet-2617.99.85.642.142.51.956335High volatile C bituminous coalBaritoTanjung0.3 - 1.2
    Tet-3273.52.815.640.541.12.076696High volatile A bituminous coalBaritoTanjung≤2.0
    Tet-463.93.06.745.345.00.437380High volatile A bituminous coalBaritoTanjung≤1.5
    Tet-524.13.09.342.645.20.877045High volatiel A bituminous coalAsem-AsemTanjung1.0 - 8.6
    Tet-627.85.15.244.045.70.867020High volatiel B bituminous coalAsem-AsemTanjung≤1.9
    Tet-7104.93.910.944.241.00.576842High volatiel B bituminous coalAsem-AsemTanjung0.8 - 2.4
    Tet-837.54.78.344.942.12.646901High volatiel B bituminous coalAsem-AsemTanjung0.5 - 7.0
    Tet-978.06.010.143.840.10.466536High volatiel B bituminous coalAsem-AsemTanjung0.1 - 2.9
    Tomm-1196.84.96.142.946.21.957181High volatile B bituminous coalBaritoMontalat0.3 - 2.0
    Tomm-22727.116.04.238.341.50.345632Subbituminous A coalBaritoMontalat0.3 - 4.2
    Tomm-35222.012.98.038.540.62.175765Subbituminous A coalBaritoMontalat0.2 - 1.3
    Tomm-4842.013.47.841.137.70.515269Subbituminous B coalBaritoMontalat0.4 - 1.2
    Tomm-55033.613.48.940.637.00.975358Subbituminous A coalBaritoMontalat0.2 - 2.6
    Tomm-6232.617.22.537.143.20.385624Subbituminous B coalBaritoMontalat0.2 - 3.0
    Tomk-146.72.210.811.875.22.217368SemianthraciteBaritoKaramuan1.0 - 4.5
    Tmw-1734.118.13.041.337.70.385294Subbituminous B coalBaritoWarukin1.5 - 18
    Tmw-22731.316.37.439.037.32.355197Subbituminous B coalBaritoWarukin0.5 - 3.7
    Tmw-3536.215.44.440.240.11.585520Subbituminous B coalBaritoWarukin2.0 - 5.0
    Tmw-41248.615.82.443.138.80.145382Subbituminous B coalBaritoWarukin0.3 - 2.4
    Tmw-5718.710.77.142.839.30.336028High volatile C bituminous coalBaritoWarukin0.5 - 3.0
    Tmw-61229.618.63.739.338.40.325195Subbituminous B coalAsem-AsemWarukin1.5 - 22.5
    Tmw-71231.913.74.742.740.30.845468Subbituminous B coalAsem-AsemWarukin1.0 - 8.6
    Tmw-8835.114.37.142.935.81.415355Subbituminous B coalAsem-AsemWarukin0.5 - 3.4
    Tmw-96031.412.64.941.940.60.725423Subbituminous B coalAsem-AsemWarukin0.1 - 4.9
    Tmpb-14019.514.22.640.642.60.895873Subbituminous A coalKutaiPulaubalang2.0 - 10.0
    Tmpb-2338.82.611.339.047.11.917050High volatile A bituminous coalKutaiPulaubalang0.2 - 1.2
    Tmpb-3814.111.52.341.544.71.006408High volatile C bituminous coalKutaiPulaubalang1.5 - 8.0
    Tmpb-42116.912.22.742.442.81.526032Subbituminous A coalKutaiPulaubalang0.7 - 4.0
    Tmpb-5345.919.43.239.937.30.415091Subbituminous C coalKutaiPulaubalang1.0 - 3.5
    Tmpb-61222.416.92.639.940.62.965656Subbituminous B coalKutaiPulaubalang0.4 - 0.5
    Tmpb-7323.117.42.340.439.91.685579Subbituminous B coalKutaiPulaubalang0.5 - 1.0
    Tmpb-8159.26.64.442.646.41.836853High volatile C bituminous coalKutaiPulaubalang0.4 - 1.3
    Tmbp-17NA12.61.141.045.40.386245Subbituminous A coalKutaiBalikpapan2.0 - 8.0
    Tmbp-2718.814.86.038.740.61.055737Subbituminous A coalKutaiBalikpapan0.5 - 5.8
    Tmbp-3816.212.24.440.443.11.416090High volatile C bituminous coalKutaiBalikpapan0.1 - 3.4
    Tmbp-41034.715.41.943.639.80.205585Subbituminous B coalKutaiBalikpapan1.0 - 6.0
    Tmbp-5631.020.73.539.236.61.445039Subbituminous C coalKutaiBalikpapan0.6 - 1.8
    Tmbp-6333.017.65.041.536.00.165168Subbituminous B coalKutaiBalikpapan1.1 - 10.2
    Tmbp-7439.812.39.940.537.31.455103Subbituminous B coalKutaiBalikpapan0.3 - 1.2
    Tmbp-8636.112.910.539.936.71.935039Subbituminous B coalKutaiBalikpapan1.0 - 2.0
    Tmbp-9627.516.59.036.638.00.554913Subbituminous B coalKutaiBalikpapan1.5 - 11.9
    Tmbp-10198.46.46.542.644.42.106705High volatile B bituminous coalKutaiBalikpapan≤2.6
    Tpkb-1650.222.63.041.033.50.214896Subbituminous C coalKutaiKampungbaru0.5 - 1.5
    Tpkb-2346.322.54.339.933.40.214772Subbituminous C coalKutaiKampungbaru4.5 - 8.3
    Tpkb-35435.315.37.138.937.90.155092Subbituminous B coalKutaiKampungbaru1.5 - 7.2
    Tmpm-11932.215.35.838.938.50.365309Subbituminous B coalSouth SumatraMuara Enim0.8 - 3.6
    Tmpm-21828.715.33.042.439.30.605732Subbituminous A coalSouth SumatraMuara Enim5.6 - 16.0
    Tmpm-3357.713.15.844.936.20.485489Subbituminous A coalSouth SumatraMuara Enim0.6 - 9.7
    Tmpm-4541.712.52.244.340.91.155817Subbituminous A coalSouth SumatraMuara Enim0.6 - 20.8
    Tmpm-51245.113.96.643.336.10.405160Subbituminous B coalSouth SumatraMuara Enim0.5 - 1.0
    Tmpm-61047.115.74.641.538.20.405430Subbituminous B coalSouth SumatraMuara Enim1.6 - 11.0
    Tmpm-7340.415.15.142.537.30.265417Subbituminous B coalSouth SumatraMuara Enim0.5 - 4.0
    Tmpm-8922.010.42.441.945.30.516244High volatile C bituminous coalSouth SumatraMuara Enim4.6 - 12.0
    Tmpm-914032.012.15.841.740.41.175831Subbituminous A coalSouth SumatraMuara Enim1.2 - 9.5
    Tmpm-101338.514.211.040.534.40.845045Subbituminous B coalSouth SumatraMuara Enim1.0 - 20.0
    Tmpm-119128.911.86.342.639.41.145641Subbituminous A coalSouth SumatraMuara Enim1.0 - 18.0
    Tmpm-126133.113.29.441.336.30.435459Subbituminous A coalSouth SumatraMuara Enim0.5 - 4.5
    Tmpm-133827.312.39.540.737.61.155483Subbituminous A coalSouth SumatraMuara Enim1.6 - 7.5
    Tmpm-143634.713.38.640.937.10.885365Subbituminous A coalSouth SumatraMuara Enim2.0 - 14.6
    Tml-1478.91.610.124.963.40.867450Medium volatile bituminous coalBengkuluLemau0.5 - 5.0
    Tml-21113.56.47.821.963.90.416537Medium volatile bituminous coalBengkuluLemau1.0 - 5.5
    Tml-32118.610.310.239.340.20.455601Subbituminous A coalBengkuluLemau0.4 - 14.8

    KSEEG
    Apr 30, 2024 Vol.57 No.2, pp. 107~280

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download