Econ. Environ. Geol. 2022; 55(1): 1-17
Published online February 28, 2022
https://doi.org/10.9719/EEG.2022.55.1.1
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : *Corresponding author : mgodo@kins.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.
Keywords high-level radioactive waste, rock mechanics, site characterization, fractured rock mass, site descriptive model
엄정기1 · 현승규2,*
1부경대학교 에너지자원공학과
2한국원자력안전기술원 원자력안전연구실
암반의 역학적 및 열적 특성은 고준위방사성폐기물(high-level radioactive waste; HLW) 심지층 처분시스템 내 방사성 물질의 격리 및 이동 지연 능력과 관련된 성능에 영향을 미칠 수 있다. 이 연구는 HLW 처분시설 부지의 암반역학적 및 열적 특성과 관련된 부지설명모델에 필수적인 항목을 고찰하고 스웨덴과 핀란드의 선행 부지설명모델 사례를 통한 기술적 배경을 논의하였다. 스웨덴 SKB (Swedish Nuclear and Fuel Management Company)와 핀란드 Posiva는 암반역학적 및 열적 특성 조사·평가에 필수적인 항목을 제시하고 부지의 안전성 분석과 처분시설의 건설을 위한 암반역학 부지설명모델을 도출하였다. 암반역학 부지설명모델은 처분시설 부지 내 응력 분포와 더불어 신선암, 절리, 절리성 암반에 대한 강도 및 변형특성과 대규모 변형대의 기하학적 구조, 소규모 불연속면의 연결망 구조 및 암석의 열적 특성에 대한 조사·평가 결과를 포함한다. 또한, 암반역학 부지설명모델은 입력변수에 대한 민감도 분석결과와 입력변수의 불확실성에 대한 평가 결과를 제시하여야 한다.
주요어 고준위방사성폐기물, 암반역학, 부지특성화, 절리성 암반, 부지설명모델
Econ. Environ. Geol. 2022; 55(1): 1-17
Published online February 28, 2022 https://doi.org/10.9719/EEG.2022.55.1.1
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Jeong-Gi Um1, Seung Gyu Hyun2,*
1Dept. of Energy Resources Engineering, Pukyong National University
2Dept. of Nuclear Safety Research, Korea Institute of Nuclear Safety
Correspondence to:*Corresponding author : mgodo@kins.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The mechanical and thermal properties of the rock masses can affect the performance associated with both the isolating and retarding capacities of radioactive materials within the deep geological disposal system for High-Level Radioactive Waste (HLW). In this study, the essential parameters for the site descriptive model (SDM) related to the rock mechanics and thermal properties of the HLW disposal facilities site were reviewed, and the technical background was explored through the cases of the preceding site descriptive models developed by SKB (Swedish Nuclear and Fuel Management Company), Sweden and Posiva, Finland. SKB and Posiva studied parameters essential for the investigation and evaluation of mechanical and thermal properties, and derived a rock mechanics site descriptive model for safety evaluation and construction of the HLW disposal facilities. The rock mechanics SDM includes the results obtained from investigation and evaluation of the strength and deformability of intact rocks, fractures, and fractured rock masses, as well as the geometry of large-scaled deformation zones, the small-scaled fracture network system, thermal properties of rocks, and the in situ stress distribution of the disposal site. In addition, the site descriptive model should provide the sensitivity analysis results for the input parameters, and present the results obtained from evaluation of uncertainty.
Keywords high-level radioactive waste, rock mechanics, site characterization, fractured rock mass, site descriptive model
엄정기1 · 현승규2,*
1부경대학교 에너지자원공학과
2한국원자력안전기술원 원자력안전연구실
암반의 역학적 및 열적 특성은 고준위방사성폐기물(high-level radioactive waste; HLW) 심지층 처분시스템 내 방사성 물질의 격리 및 이동 지연 능력과 관련된 성능에 영향을 미칠 수 있다. 이 연구는 HLW 처분시설 부지의 암반역학적 및 열적 특성과 관련된 부지설명모델에 필수적인 항목을 고찰하고 스웨덴과 핀란드의 선행 부지설명모델 사례를 통한 기술적 배경을 논의하였다. 스웨덴 SKB (Swedish Nuclear and Fuel Management Company)와 핀란드 Posiva는 암반역학적 및 열적 특성 조사·평가에 필수적인 항목을 제시하고 부지의 안전성 분석과 처분시설의 건설을 위한 암반역학 부지설명모델을 도출하였다. 암반역학 부지설명모델은 처분시설 부지 내 응력 분포와 더불어 신선암, 절리, 절리성 암반에 대한 강도 및 변형특성과 대규모 변형대의 기하학적 구조, 소규모 불연속면의 연결망 구조 및 암석의 열적 특성에 대한 조사·평가 결과를 포함한다. 또한, 암반역학 부지설명모델은 입력변수에 대한 민감도 분석결과와 입력변수의 불확실성에 대한 평가 결과를 제시하여야 한다.
주요어 고준위방사성폐기물, 암반역학, 부지특성화, 절리성 암반, 부지설명모델
Table 1 . Strength and deformability of Olkiluoto gneisses (GN) and pegmatite granite (PGR) at Onkalo tunnel, Finland (POPSIVA, 2012b).
Parameter | Rock type | Mean value | Standard deviation | 95% conf. limits | Number of samples |
---|---|---|---|---|---|
Young’s modulus, E (GPa) | GN | 60 | 10 | 31/81 | 109 |
PGR | 60 | 8 | 47 / 73 | 13 | |
Poisson’s ratio, v (mm/mm) | GN | 0.25 | 0.04 | 0.15/0.33 | 109 |
PGR | 0.29 | 0.06 | 0.14/0.34 | 13 | |
Uniaxial compressive strength, UCS | GN | 108 | 26 | 58/161 | 94 |
(MPa) | PGR | 102 | 27 | 56/146 | 13 |
Crack damage stress, σCD(MPa) | GN | 99 | 26 | 51/153 | 84 |
PGR | 85 | 17 | 56/113 | 13 | |
Crack initiation stress, σCD(MPa) | GN | 52 | 12 | 34/83 | 85 |
PGR | 57 | 12 | 35/77 | 12 | |
Indirect tensile strength, σT,I(MPa) | GN | 12.1 | 2.9 | 6.6/17.4 | 98 |
PGR | 8.9 | 2.1 | 4.6/12.0 | 51 | |
Direct tensile strength, σT,D (MPa) | GN | 7.6 | 1.5 | 5.9/10.3 | 18 |
PGR | - | - | 0 | ||
Mode I fracture toughness, K*IC | GN | 2.29 | 0.57 | 1.43/3.01 | 9 |
Chevron bend, (MPa1/2) | PGR | 1.58 | 0.2 | 1.39/1.77 | 3 |
Mode I fracture toughness, K*IC | GN | 1.58 | 0.51 | 0.96/2.39 | 9 |
Brazilian disk experiment, (MPa1/2) | PGR | 1.12 | 0.1 | 1.02/1.21 | 3 |
Mode II fracture toughness, K*IIC | GN | 3.47 | 0.39 | 2.87/4.04 | 9 |
Punch-through with conf. (MPa1/2) | PGR | 3.30 | 0.47 | 2.89/3.77 | 3 |
Table 2 . Estimated Hoek-Brown strength parameters from rock domain RFM029 at Forsmark, Sweden (SKB, 2007a).
Fracture domain | Rock type | Number of samples | Min. strength1 | Mean strength | Max. strength2 | |||
---|---|---|---|---|---|---|---|---|
UCS (MPa) | mi | UCS (MPa) | mi | UCS (MPa) | mi | |||
FFM01 | Granite to granodiorite, metamorphic, medium grained | 86 | 149 | 31 | 225 | 28 | 299 | 26 |
FFM01 | Granite, granodiorite and tonalite, metamorphic, fine-to medium-grained | 4 | 136 | 50 | 165 | 46 | 194 | 42 |
FFM01 | Pegmatite, pegmatitic granite | 15 | 165 | 19 | 227 | 18 | 289 | 17 |
FFM03 | Granite to granodiorite, metamorphic, medium grained | 25 | 196 | 29 | 221 | 28 | 246 | 28 |
FFM03 | Tonalite to granodiorite, metamorphic | 8 | 142 | 13 | 151 | 13 | 160 | 13 |
1 Lower envelope, 95% probability..
2 Upper envelope, 95% probability..
Table 3 . Estimated Mohr-Coulomb strength parameters from rock domain RFM029 at Forsmark, Sweden (SKB, 2007a).
Fracture domain | Rock type | Number of samples | Min. strength1 | Mean strength | Max. strength2 | |||
---|---|---|---|---|---|---|---|---|
C (MPa) | Φ (°) | C (MPa) | Φ (°) | C (MPa) | Φ (°) | |||
FFM01 | Granite to granodiorite, metamorphic, medium grained | 86 | 19 | 59 | 28 | 60 | 36 | 61 |
FFM01 | Granite, granodiorite and tonalite, metamorphic, fine to medium grained | 4 | 17 | 62 | 19 | 63 | 22 | 63 |
FFM01 | Pegmatite, pegmatitic granite | 15 | 24 | 55 | 33 | 56 | 42 | 56 |
FFM03 | Granite to granodiorite, metamorphic, medium grained | 25 | 24 | 60 | 27 | 60 | 30 | 61 |
FFM03 | Tonalite to granodiorite, metamorphic | 8 | 24 | 51 | 25 | 51 | 26 | 51 |
1 Lower envelope, 95% probability..
2 Upper envelope, 95% probability..
Table 4 . Summary of strength properties from direct shear tests for the fracture domains at Forsmark, Sweden (SKB, 2007a).
Fracture domain | Peak friction (°) | Peak cohesion (MPa) | Residual friction (°) | Residual cohesion (MPa) |
---|---|---|---|---|
mean/std. dev. | mean/std. dev, | mean/std. dev. | mean/std. dev. | |
min - max | min - max | min - max | min - max | |
uncertainty of μ | uncertainty of μ | uncertainty of μ | uncertainty of μ | |
FFM01 | 36.6/2.9 | 0.8/0.3 | 34.9/3.4 | 0.3/0.2 |
29.3 - 42.0 | 0.2 - 1.3 | 27.9 - 41.9 | 0.1 - 0.8 | |
±2.9% | ±13.7% | ±3.6% | ±24.3% | |
FFM02 | 36.4/2.5 | 0.5/0.4 | 34.8/7.3 | 0.4/0.6 |
34.4 - 40.0 | 0.2 - 1.0 | 24.1 - 40.3 | 0.1 - 1.3 | |
±6.7% | ±78.4% | ±20.6% | ±147.0% | |
FFM03 | 37.0/1.7 | 0.6/0.2 | 34.2/6.2 | 0.5/0.4 |
34.2 - 39.0 | 0.3 - 0.9 | 25.7 - 41.5 | 0.2 - 1.1 | |
±3.0% | ±21.8% | ±11.8% | ±52.3% | |
FFM04 | 32.0/3.3 | 0.9/0.4 | 32.2/2.5 | 0.3/0.1 |
28.5 - 35.0 | 0.6 - 1.4 | 29.6 - 34.6 | 0.2 - 0.4 | |
±11.7% | ±50.3% | ±8.8% | ±37.7% | |
FFM05 | 37.0/1.8 | 0.8/0.2 | 34.3/3.0 | 0.4/0.1 |
35.7 - 38.2 | 0.7 - 0.9 | 32.2 - 36.4 | 0.4 - 0.5 | |
±6.7% | ±34.7% | ±12.1% | ±34.7% | |
DZ | 35.3/2.4 | 0.8/0.5 | 34.8/2.0 | 0.3/0.2 |
32.5 - 38.4 | 0.0 - 1.7 | 30.3 - 36.8 | 0.0 - 0.6 | |
±4.2% | ±38.7% | ±3.6% | ±41.3% |
Note: The uncertainty of the mean is quantified for a 95% confidence interval. Minimum and maximum truncation values are based on the observed min. and max. for the tested population..
Table 5 . Summary of deformability properties from direct shear tests for the fracture domains at Forsmark, Sweden (SKB, 2007a).
Fracture domain | Normal stiffness, Kn (GPa/m) | Shear stiffness, KS0.5 (GPa/m) | Shear stiffness, KS5.0 (GPa/m) | Shear stiffness, KS20.0 (GPa/m) |
---|---|---|---|---|
mean/std. dev. | mean/std. dev. | mean/std. dev. | mean/std. dev. | |
min - max | min - max | min - max | min - max | |
uncertainty of μ | uncertainty of μ | uncertainty of μ | uncertainty of μ | |
FFM01 | 656/396 | 10/6 | 26/9 | 34/10 |
159 - 1,833 | 1 - 23 | 7 - 46 | 18 - 52 | |
±22.0% | ±21.8% | ±12.6% | ±10.7% | |
FFM02 | 248/165 | 8/4 | 26/4 | 33/8 |
115 - 483 | 4 - 12 | 21 - 31 | 25 - 41 | |
±65.2% | ±49.0% | ±15.1% | ±23.8% | |
FFM03 | 293/193 | 8/4 | 31/7 | 35/10 |
152 - 734 | 4 - 15 | 23 - 43 | 20 - 49 | |
±43.0% | ±32.7% | ±14.8% | ±18.7% | |
FFM04 | 1,385/283 | 8/6 | 16/5 | 23/5 |
1,072 - 1,624 | 1 - 12 | 12 - 22 | 18 - 29 | |
±23.1% | ±84.9% | ±35.4% | ±24.6% | |
FFM05 | 599/57 | 6/3 | 20/7 | 25/2 |
559 - 639 | 4 - 8 | 14 - 25 | 23 - 26 | |
±13.2% | ±69.3% | ±48.5% | ±11.2% | |
DZ | 662/729 | 12/10 | 26/9 | 31/8 |
167 - 2,445 | 3 - 35 | 7 - 41 | 19 - 44 | |
±68.3% | ±51.7% | ±21.5% | ±16.0% |
Note: The uncertainty of the mean is quantified for a 95% confidence interval. Minimum and maximum truncation values are based on the observed min. and max. for the tested population..
Table 6 . Comparison of the results from SDM 1.2 and modelling stage 2.2 for the rock mass outside deformation zones in domain RFM029 (SKB, 2007a).
Rock mass parameter | Forsmark v1.2 | Forsmark v2.2 | ||||
---|---|---|---|---|---|---|
min | mean/std dev | max | min | mean/std dev | max | |
Q* | 7 | 370 [86] | 2,133 | 2 | 363 [100] | 2,133 |
RMR | 73 | 87/6 | 98 | 71 | 87/6 | 98 |
Em (GPa) | 37 | 69/10 | 75 | 34 | 69/10 | 76 |
Vm | 0.12 | 0.22/0.03 | 0.27 | 0.11 | 0.22/0.03 | 0.30 |
UCSm (H-B) (MPa) | 18 | 80/29 | 153 | 23 | 84/28 | 153 |
Φm (°) | 40 | 49/2 | 51 | 32 | 49/2 | 52 |
cm (MPa) | 15 | 25/4 | 35 | 12 | 26/4 | 35 |
UCSm (M-C) (MPa) | 63 | 134/26 | 196 | 44 | 138/25 | 196 |
Tm (MPa) | 0.3 | 2/1 | 5 | 0.5 | 2/1 | 5 |
* Mode values are shown in brackets..
Table 7 . Estimated strength and deformability of fractured rock mass at Forsmark, Sweden (SKB, 2002b).
Lithology | Rock mass strength | Rock mass modulus | Poisson’s ratio | ||||||
---|---|---|---|---|---|---|---|---|---|
mean (MPa) | 5/95 percentiles (MPa) | cov | mean (GPa) | 5/95 percentiles (MPa) | cov | mean | 5/95 percentiles (MPa) | cov | |
Äspö diorite | 140.1 | 83 - 198 | 0.25 | 37.2 | 25 - 49 | 0.20 | 0.34 | 0.28 - 0.42 | 0.15 |
Småland granite | 124.3 | 73 - 175 | 0.25 | 42.0 | 28 - 56 | 0.20 | 0.32 | 0.28 - 0.40 | 0.15 |
Fine grained granite | 114.4 | 68 - 161 | 0.25 | 36.4 | 24 - 48 | 0.20 | 0.31 | 0.28 - 0.39 | 0.15 |
Mixed lithology | 75.0 | 44 - 106 | 0.25 | 36.4 | 24 - 48 | 0.20 | 0.32 | 0.28 - 0.39 | 0.15 |
Table 8 . Inter relationships between Vp, Em and Qc (Barton, 2002).
Qc | 0.001 | 0.01 | 0.1 | 1.0 | 10 | 100 | 1000 |
---|---|---|---|---|---|---|---|
Vp | 0.5 | 1.5 | 2.5 | 3.5 | 4.5 | 5.5 | 6.5 km/s |
Em | 1.0 | 2.2 | 4.6 | 10 | 21.5 | 46.4 | 100 GPa |
Table 9 . Measured thermal conductivity (W/(m·K)) at Forsmark, Sweden (SKB, 2008).
Rock code | Rock name | Mean | St. dev. | Max | Min | No. of samples |
---|---|---|---|---|---|---|
101057 | Granite to granodiorite, metamorphic, medium-grained | 3.68 | 0.17 | 4.01 | 3.25 | 741 |
101056 | Granodiorite, metamorphic | 3.04 | 0.09 | 3.20 | 2.98 | 5 |
101054 | Tonalite to granodiorite, metamorphic | 2.73 | 0.19 | 2.94 | 2.45 | 5 |
101051 | Granite, granodiorite and tonalite, metamorphic, fine- to medium-grained | 2.85 | 0.26 | 3.39 | 2.46 | 12 |
101058 | Granite, metamorphic, aplftic | 3.85 | 0.13 | 4.06 | 3.68 | 122 |
101061 | Pegmatite, pegmatitic granite | 3.33 | 0.20 | 3.50 | 3.07 | 4 |
102017 | Amphibolite | 2.33 | 0.10 | 2.48 | 2.21 | 12 |
111058 | Granite, fine- to medium-grained | 3.47 | 0.17 | 3.62 | 3.22 | 5 |
103076 | Felsic to intermediate volcanic rock, metamorphic | 2.54 | 2.99 | 2.09 | 2 | |
101033 | Diorite, quartz diorite and gabbro, metamorphic | 2.28 | 1 |
1Includes four oxidised samples. 2Both altered and unaltered samples included..
Table 10 . Measured thermal expansion (m/(m·K)) at Forsmark, Sweden (SKB, 2008).
Rock code | Rock name | Mean | St. dev. | Min | Max | No. of samples |
---|---|---|---|---|---|---|
101057 | Granite to granodiorite | 7.7 · 10-6 | 2.2 · 10-6 | 2.1 · 10-6 | 1.5 · 10-5 | 56 |
101056 | Granodiorite | 8.1 · 10-6 | 3.4 · 10-6 | 5.2 · 10-6 | 1.4 · 10-5 | 6 |
101054 | Tonalite to granodiorite | 7.2 · 10-6 | 5.3 · 10-6 | 8.2 · 10-5 | 3 | |
101051 | Granite, granodiorite and tonalite | 7.8 · 10-6 | 1.2 · 10-6 | 6.5 · 10-6 | 1.0 · 10-5 | 6 |
101058 | Granite, aplitic | 7.5 · 10-6 | 6.9 · 10-6 | 8.0 · 10-5 | 3 |
Sung Kyung Hong, Kwangmin Jin
Econ. Environ. Geol. 2024; 57(4): 387-396Mi Kyung Kang, Hana Park, Sunju Park, Hae Sik Jeong, Woon Sang Yoon, Jeonghwan Lee
Econ. Environ. Geol. 2023; 56(6): 887-897Hyeongmok Lee, Jiho Jeong, Jaesung Park, Subi Lee, Suwan So, Jina Jeong
Econ. Environ. Geol. 2023; 56(5): 533-545