Research Paper

Split Viewer

Econ. Environ. Geol. 2021; 54(6): 767-785

Published online December 28, 2021

https://doi.org/10.9719/EEG.2021.54.6.767

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea

Heonkyung Im1, Dongbok Shin1,2,*, Bong-chul Yoo3

1Department of Geoenvironmental Sciences, Kongju National University, Gongju 32588, Republic of Korea
2Yellow Sea Institute of Geoenvironmental Sciences, Kongju National University, Gongju 32588, Republic of Korea
3Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea

Correspondence to : *shin@kongju.ac.kr

Received: December 21, 2021; Revised: December 23, 2021; Accepted: December 23, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 °C and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 °C, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

Keywords Pailou deposit, magnesite, fluid inclusion, chlorite geothermometer, Daeheung deposit

중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교

임헌경1 · 신동복1,2,* · 유봉철3

1공주대학교 지질환경과학과
2황해지질환경연구소
3한국지질자원연구원 자원탐사개발연구센터

요 약

중국 쟈오랴오지(Jiao-Liao-Ji) 벨트에 속한 다스챠오(Dashiqiao) 광화대에는 세계적 규모의 마그네사이트 광상들이 발달하며, 한반도 북측으로 연장되어 북한 단천지역 주요 마그네사이트 광상도 이에 속한다. 중국 다스챠오 광화대 팰로우(Pailou) 광상의 마그네사이트 광석은 구성광물에 따라 순수한 마그네사이트, 녹니석-마그네사이트, 녹니석-활석-마그네사이트, 그리고 돌로마이트 그룹으로 구분된다. 암석기재 연구결과 마그네사이트는 돌로마이트가 변질작용을 받아 형성되었음을 보여주며, 이를 다시 교대하는 후기 변질광물로 활석, 녹니석, 인회석 등이 산출된다. 마그네사이트내에 관찰되는 유체포유물은 액상포유물로서 균일화온도는 121~250 ℃, 염농도는 1.7~22.4 wt% NaCl equiv.의 범위를 보여준다. 열수변질작용의 온도를 지시하는 녹니석 지온계는 137~293 ℃로서 유체포유물의 균일화온도에 비해 약간 높으며, 이들의 생성압력은 3.2 kb 이하로 나타난다. 연구지역 마그네사이트 광화작용은 초기 형성된 돌로마이트가 Mg가 부화된 유체에 의한 교대작용을 받아 마그네사이트 광체를 형성하고, 이후 광역변성작용과 열수변질작용을 거치며 부화되였으며, Si 및 Al이 부화된 후기 열수에 의해 활석 등의 변질광물이 정출된 것으로 보인다. 이러한 결과는 북한의 대표적인 대흥 마그네사이트 광상의 정출환경과 유사하며 두 광상이 상호 유사한 지질광상학적 생성과정을 거치며 광화작용이 진행된 것으로 여겨진다.

주요어 중국 팰로우광상, 마그네사이트, 유체포유물, 녹니석 지온계, 북한 대흥광상

Article

Research Paper

Econ. Environ. Geol. 2021; 54(6): 767-785

Published online December 28, 2021 https://doi.org/10.9719/EEG.2021.54.6.767

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Genetic Environment of the Pailou Magnesite Deposit in Dashiqiao Belt, China, and Its Comparison with the Daeheung Deposit in North Korea

Heonkyung Im1, Dongbok Shin1,2,*, Bong-chul Yoo3

1Department of Geoenvironmental Sciences, Kongju National University, Gongju 32588, Republic of Korea
2Yellow Sea Institute of Geoenvironmental Sciences, Kongju National University, Gongju 32588, Republic of Korea
3Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Republic of Korea

Correspondence to:*shin@kongju.ac.kr

Received: December 21, 2021; Revised: December 23, 2021; Accepted: December 23, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

World-class magnesite deposits are developed in the Dashiqiao mineralized district of the Jiao-Liao-Ji Belt in China. This belt extends to the northern side of the Korean Peninsula and hosts major magnesite deposits in the Dancheon region of North Korea. Magnesite ores from the Pailou deposits in the Dashiqiao district is classified into pure magnetite, chlorite-magnetite, chlorite-talc-magnetite, and dolomite groups depending on the constituent minerals. According to the result of petrographic study, magnesite was formed by the alteration of dolomite, and, talc, chlorite, and apatite were produced as late-stage alteration minerals that replaced the magnesite. Fluid inclusions observed in magnesite are a liquid-type inclusion, with a homogenization temperature of 121-250 °C and a salinity of 1.7-22.4 wt% NaCl equiv. The chlorite geothermometer, indicating the temperature of hydrothermal alteration, is 137~293 °C, slightly higher than the homogenization temperature of fluid inclusions, and the pressure is calculated to be less than 3.2 kb. For magnesite mineralization in the study area, the initially formed-dolomite was subjected to replacement by Mg-rich fluid to form a magnesite ore body, and then it was enriched through regional metamorphism and hydrothermal alteration. It seems that altered minerals such as talc were crystallized by Si and Al-rich late-stage hydrothermal fluids. These results are similar to the genetic environments of the Daeheung deposit, a representative magnesite deposit in North Korea, and it is believed that the two deposits went through a similar geological and ore genetic process of magnesite mineralization.

Keywords Pailou deposit, magnesite, fluid inclusion, chlorite geothermometer, Daeheung deposit

중국 다스챠오벨트 팰로우 마그네사이트 광상의 생성환경 및 북한 대흥 광상과의 비교

임헌경1 · 신동복1,2,* · 유봉철3

1공주대학교 지질환경과학과
2황해지질환경연구소
3한국지질자원연구원 자원탐사개발연구센터

Received: December 21, 2021; Revised: December 23, 2021; Accepted: December 23, 2021

요 약

중국 쟈오랴오지(Jiao-Liao-Ji) 벨트에 속한 다스챠오(Dashiqiao) 광화대에는 세계적 규모의 마그네사이트 광상들이 발달하며, 한반도 북측으로 연장되어 북한 단천지역 주요 마그네사이트 광상도 이에 속한다. 중국 다스챠오 광화대 팰로우(Pailou) 광상의 마그네사이트 광석은 구성광물에 따라 순수한 마그네사이트, 녹니석-마그네사이트, 녹니석-활석-마그네사이트, 그리고 돌로마이트 그룹으로 구분된다. 암석기재 연구결과 마그네사이트는 돌로마이트가 변질작용을 받아 형성되었음을 보여주며, 이를 다시 교대하는 후기 변질광물로 활석, 녹니석, 인회석 등이 산출된다. 마그네사이트내에 관찰되는 유체포유물은 액상포유물로서 균일화온도는 121~250 ℃, 염농도는 1.7~22.4 wt% NaCl equiv.의 범위를 보여준다. 열수변질작용의 온도를 지시하는 녹니석 지온계는 137~293 ℃로서 유체포유물의 균일화온도에 비해 약간 높으며, 이들의 생성압력은 3.2 kb 이하로 나타난다. 연구지역 마그네사이트 광화작용은 초기 형성된 돌로마이트가 Mg가 부화된 유체에 의한 교대작용을 받아 마그네사이트 광체를 형성하고, 이후 광역변성작용과 열수변질작용을 거치며 부화되였으며, Si 및 Al이 부화된 후기 열수에 의해 활석 등의 변질광물이 정출된 것으로 보인다. 이러한 결과는 북한의 대표적인 대흥 마그네사이트 광상의 정출환경과 유사하며 두 광상이 상호 유사한 지질광상학적 생성과정을 거치며 광화작용이 진행된 것으로 여겨진다.

주요어 중국 팰로우광상, 마그네사이트, 유체포유물, 녹니석 지온계, 북한 대흥광상

    Fig 1.

    Figure 1.Geologic map showing the distribution of the Liaohe Group in the Dashiqiao magnesite belt and the position of the Pailou magnesite deposit in northeastern China (after Tang et al., 2013).
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 2.

    Figure 2.Aerial view (www.google.com/maps) of the Pailou magnesite deposit and sample locations.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 3.

    Figure 3.Rock slab images of magnesite ores from the Pailou deposit. a-c) pure magnesite group, d-e) chlorite+magnesite group, f-g) chlorite+talc+magnesite group, h-i) dolomite group. Abbreviations: Qtz=quartz, Mgs=magnesite, Dol=dolomite, Chl=chlorite, Tlc=talc.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 4.

    Figure 4.Microphotographs and BSE images of magnesite ores from the Pailou deposit. a-d, l-m) pure magnesite group, e-f, n) chlorite+magnesite group, g-h, k) chlorite+talc+magnesite group, i-j) dolomite group. Abbreviations: Apt=apatite, Cc=calcite. Refer to Figure 3 for others.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 5.

    Figure 5.Chemical compositions of magnesite and dolomite plotted on the (a) CaO-MgO-FeO and (b) SiO2-CaO-MgO diagrams, and compositional variations between (c) MgO and CaO and (d) FeO and MnO for different types of dolomites comprising the magnesite ore.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 6.

    Figure 6.Compositions of chlorites from the Pailou deposit plotted on the nomenclature diagram of chlorites (after Hey, 1954). Refer to Figure 3 for abbreviations.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 7.

    Figure 7.Microphotographs of two-phase fluid inclusions (L-V) hosted in magnesite from the Pailou deposit. a-b) pure magnesite group, c) chlorite+magnesite group, d) chlorite+talc+magnesite group.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 8.

    Figure 8.Microthermometric measurements of two-phase fluid inclusions in magnesite from the Pailou deposit. (A) Histogram of homogenization temperature, (B) Histogram of salinity, (C) Homogenization temperature and salinity correlation plotted on the phase diagram of H2O-NaCl (Driesner and Heinrich, 2007).
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 9.

    Figure 9.Diagram summarizing the data of salinity and homogenization temperature of fluid inclusions from representative magnesite deposits worldwide, in comparision with those of the Pailou deposit (red cross) in this study.
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Fig 10.

    Figure 10.Pressure-temperature diagram showing the ranges of fluid inclusion isochores in the Pailou deposits. The trapping conditions are limited by chlorite geothermometer and fluid inclusion isochores, of which the latter were constructed using the model proposed by Driesner and Heinrich (2007).
    Economic and Environmental Geology 2021; 54: 767-785https://doi.org/10.9719/EEG.2021.54.6.767

    Table 1 . Petrographic descriptions of magnesite ores and dolostones in the Pailou deposit.

    Rock typeGroupSample No.MineralsLithology
    MagnesitePure Mgs19PL-6Mgs±QtzWhite, coarse grained, Qtz vein
    19PL-6-2Mgs±Qtz±Dol±AptWhite and gray, coarse grained, Qtz+Apt vein
    19PL-7Mgs+Qtz±DolPinkish white, coarse grained, Qtz vein
    19PL-10aMgs+Qtz±Tlc±DolPinkish white, coarse grained, Qtz vein
    19PL-13Mgs±CcPinkish, coarse grained, Cc vein
    19PL-13-1Mgs, QtzPinkish white, coarse grained, Qtz vein
    19PL-13-3Mgs+DolPinkish, coarse grained, Dol vein
    19PL-13-4Mgs±DolPinkish, coarse grained, Dol vein
    Chl+Mgs19PL-6-1Mgs±Qtz±Chl±AptWhite and gray, coarse grained, Qtz+Chl+Apt vein
    19PL-9Mgs±Chl±DolPinkish white, coarse grained, Chl+Dol vein
    19PL-11Mgs±Chl±TlcWhite, coarse grained, Chl+Tlc vein
    19PL-13-2Mgs±Dol±Chl±AptPinkish, coarse grained, Chl+Apt and Dol vein
    Chl+Tlc+Mgs19PL-2-1Mgs+Tlc+Chl±AptGray, coarse to medium grained, Chl+Tlc+Apt vein
    19PL-2-2Mgs+Tlc+Chl±AptDark gray, coarse to medium grained, Chl+Tlc+Apt vein
    19PL-3-1Mgs+Tlc+ChlWhite,coarsetomediumgrained, Chl+Tlc vein
    19PL-3-2Mgs+Tlc+Chl±AptWhite,coarsetomediumgrained, Chl+Tlc+Apt vein
    19PL-8aMgs+Tlc+Chl±DolGray, coarse grained, Chl+Tlc vein
    19PL-10bMgs+Tlc+Chl±AptPinkish white, coarse grained, Chl+Tlc+Apt vein
    DolostoneDol19PL-1Dol±QtzWhite, fine grained, Dol vein
    19PL-4Dol±ChlDark gray, fine grained, Dol vein
    19PL-5Dol+Qtz±AptWhite, coarse to medium grained, Qtz vein
    19PL-12Dol±AptDark gray, fine grained, Qtz vein

    Refer to Figure 3 and 4 for abbreviations..


    Table 2 . Electron microprobe analysis of dolomite in the Pailou deposit.

    Sample No.TypeSiO2Al2O3FeOMnOMgOCaOTotal
    19PL-1host0.300.0121.7529.4151.46
    19PL-1vein0.020.590.1221.2128.9050.84
    19PL-1host0.310.0521.1329.5751.06
    19PL-3-1residue0.1021.5930.3552.04
    19PL-3-1residue0.1122.0130.5052.62
    19PL-3-1residue0.030.060.0221.7530.4952.35
    19PL-4vein0.330.0521.9230.1452.44
    19PL-4host0.010.630.0321.5030.7852.94
    19PL-4host0.100.0422.0230.6652.82
    19PL-4vein0.4421.5630.2452.23
    19PL-5host0.040.0121.8330.4852.37
    19PL-5host0.000.080.0321.8530.3552.32
    19PL-5host0.0521.6030.5352.18
    19PL-5host0.030.0222.0530.3952.49
    19PL-5host0.040.0122.1330.7052.88
    19PL-5host0.020.0421.9330.6452.62
    19PL-5host0.030.0722.0430.4852.61
    19PL-6-2residue0.120.0521.7630.2352.16
    19PL-6-2residue0.030.080.0121.6730.9452.73
    19PL-6-2residue0.070.0221.8529.9551.89
    19PL-7residue0.020.100.0421.3129.4450.90
    19PL-7residue0.070.110.0621.3829.8751.48
    19PL-7residue0.120.0421.3530.2951.80
    19PL-8aresidue0.0722.0530.7452.86
    19PL-8aresidue0.010.120.0121.9430.5952.66
    19PL-9vein0.020.0721.8529.8551.78
    19PL-9vein0.010.030.0321.6530.0151.73
    19PL-10avein0.0621.6230.3051.97
    19PL-12host0.010.460.0421.8630.8653.23
    19PL-12host0.080.750.0121.3830.0652.29
    19PL-13-2vein0.020.0321.2130.2051.45
    19PL-13-2vein0.010.0922.1329.9652.20
    19PL-13-3host0.020.120.0521.8230.4052.41
    19PL-13-3host0.0521.7430.0151.80
    19PL-13-3vein0.020.150.0421.5829.8051.59
    19PL-13-3vein0.010.090.0221.4130.3551.88
    19PL-13-4vein0.030.0621.6029.9051.59
    19PL-13-4vein0.0821.3429.6851.09

    .


    Table 3 . Electron microprobe analysis of magnesite in the Pailou deposit.

    GroupSample No.SiO2Al2O3FeOMnOMgOCaOTotal
    Pure Mgs19PL-60.030.270.0347.090.0247.45
    19PL-60.020.280.0246.960.6647.93
    19PL-6-20.020.030.350.0745.770.6746.89
    19PL-6-20.050.340.0346.030.4446.89
    19PL-6-20.330.0445.780.7546.90
    19PL-70.490.0245.650.8547.02
    19PL-10a0.020.220.0046.080.6546.98
    19PL-10a0.050.050.120.0246.150.1946.57
    19PL-10a0.020.220.0646.160.1246.57
    19PL-10a0.1946.890.1947.27
    19PL-130.040.630.0445.860.3646.92
    19PL-130.000.590.0545.760.4446.84
    19PL-13-10.010.340.0147.540.2848.18
    19PL-13-20.020.010.390.0645.980.7247.18
    19PL-13-20.030.380.0245.800.6846.91
    19PL-13-30.030.010.380.0145.980.0146.42
    19PL-13-30.0546.920.1647.12
    19PL-13-30.000.190.0246.810.1747.20
    19PL-13-30.020.210.0146.410.7847.44
    19PL-13-40.010.270.0446.330.1246.77
    19PL-13-40.000.410.0146.170.5347.12
    Chl+Mgs19PL-6-10.030.210.0446.400.6347.32
    19PL-90.080.0146.930.3347.35
    19PL-110.010.240.0746.490.9747.78
    19PL-110.230.0647.190.3347.80
    Chl+Tlc+Mgs19PL-2-10.3346.120.6847.13
    19PL-2-10.340.0446.000.5946.97
    19PL-2-10.040.340.0346.370.0646.83
    19PL-2-10.370.0245.920.7147.03
    19PL-2-20.030.000.1946.180.1746.56
    19PL-2-20.010.050.200.0146.820.0147.09
    19PL-3-10.010.2747.320.3147.91
    19PL-3-10.210.0446.350.5247.12
    19PL-3-20.010.200.0546.610.6647.53
    19PL-3-20.030.220.0545.950.4246.67
    19PL-8a0.030.490.0547.640.0348.23
    19PL-10b0.2647.290.0447.60
    19PL-10b0.000.4246.870.0447.32
    19PL-10b0.210.0646.960.2047.43
    19PL-10b0.230.0246.690.7547.70
    19PL-10b0.030.000.170.0046.570.9047.68

    .


    Table 4 . Electron microprobe analysis of chlorite in the Pailou deposit.

    GroupsChl+MgsChl+Tlc+Mgs
    Sample No.19PL-6-119PL-919PL-1119PL-13-219PL-2-119PL-2-219PL-3-119PL-3-219PL-8a19PL-10b
    Analysis No.134567345345223568910125612567345910113451237891213
    SiO242.5633.8634.6133.9334.9338.1239.0536.8637.3433.4633.2432.6942.6133.1735.7232.8132.2231.6235.7433.2830.9232.3031.1732.3932.7732.7432.7635.1832.2031.8232.4234.7931.7832.5731.4033.6534.8433.2532.1431.8431.4832.7636.1832.6432.3632.02
    TiO20.000.000.000.000.000.020.000.000.000.000.000.020.000.030.010.000.000.000.000.000.000.010.000.010.020.000.000.000.030.000.000.010.020.000.000.010.020.010.010.010.020.000.000.000.000.00
    Al2O312.4612.5616.4913.2316.6812.7117.6616.6116.5516.7916.0515.8515.9616.4415.9017.9018.4717.6914.9317.2619.8717.9419.9519.1317.3417.7816.9515.7418.5318.4118.6017.3719.1019.6819.6516.5916.3318.6619.0819.8120.6618.9714.6720.7620.0019.28
    FeO0.130.170.090.160.110.210.240.150.160.160.140.140.320.150.180.110.190.230.150.180.160.130.160.240.110.140.130.120.130.270.230.170.370.340.300.170.200.230.160.130.140.170.180.170.160.20
    MnO0.000.020.010.000.000.000.040.020.010.010.000.000.000.000.010.000.000.000.010.040.000.020.020.010.030.000.000.000.010.020.000.000.000.010.000.000.010.000.030.030.010.000.000.000.020.02
    MgO23.8632.1934.4033.0425.1429.3227.1425.7426.7235.5235.5035.8629.1535.0333.7434.1534.3234.2334.1633.8533.9034.6033.6333.4334.9334.6235.1934.1934.3734.9534.0734.2633.7932.4533.8235.4035.0634.8533.3432.4432.0633.3934.7832.2433.1333.36
    CaO0.030.320.090.130.080.470.100.110.250.030.020.010.260.010.030.010.030.040.010.030.040.050.020.020.050.010.020.010.020.070.030.040.020.010.020.020.020.010.030.030.030.030.030.020.020.02
    Na2O0.000.080.000.010.020.050.000.000.010.000.000.000.010.010.040.010.040.020.000.050.000.000.010.020.090.060.000.000.010.010.020.020.000.020.040.000.020.000.020.000.010.030.010.000.000.00
    K2O0.010.030.000.010.000.050.130.020.010.000.010.000.090.010.010.010.000.020.020.020.000.000.000.030.070.020.000.010.010.010.000.020.020.040.000.020.000.030.010.010.010.030.020.010.020.00
    Cr2O30.010.000.010.010.010.000.000.000.000.030.010.010.020.000.000.020.010.020.000.030.000.030.040.010.000.030.040.020.000.000.020.010.060.040.020.000.000.010.040.030.010.020.000.000.000.00
    F0.530.450.100.200.260.820.790.430.690.160.070.001.780.160.030.000.160.100.000.190.510.350.320.420.000.480.230.160.190.230.190.520.160.230.390.350.190.480.000.000.130.000.070.000.160.00
    Cl0.000.010.020.000.010.040.030.020.010.000.000.000.010.000.000.020.010.020.000.010.000.010.000.010.040.020.000.010.010.000.000.010.010.000.010.010.000.030.000.000.000.010.000.010.000.00
    Total79.5979.6985.8180.7177.2481.8185.1779.9481.7486.1685.0384.5690.1985.0185.6785.0485.4483.9985.0384.9485.4085.4385.3285.7085.4385.9185.3285.4385.5185.7985.5987.2085.3385.3885.6586.2286.7087.5684.8584.3384.5485.4085.9385.8585.8884.91
    Cations based on 28 oxygen
    Si7.147.056.776.456.717.097.315.966.076.355.986.105.876.266.656.196.056.056.716.275.806.065.856.046.176.096.166.576.047.306.076.355.986.105.876.256.436.076.236.286.236.256.436.077.157.21
    Al(IV)0.860.951.231.551.290.910.692.041.931.652.021.902.131.741.351.811.951.951.291.732.201.942.151.961.831.911.841.431.960.701.931.652.021.902.131.751.571.931.771.721.771.751.571.930.850.79
    Al(VI)2.901.991.742.081.813.092.212.042.192.112.232.452.231.922.152.172.152.052.022.112.212.042.292.262.022.021.932.052.152.592.192.112.232.452.231.891.992.111.921.861.781.891.992.113.003.06
    Ti0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.00
    Cr0.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.010.000.000.000.010.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.00
    Fe3+0.030.020.030.010.030.020.030.040.040.030.060.050.050.020.030.020.030.040.020.030.030.020.030.040.020.020.020.020.020.050.040.030.060.050.050.030.030.030.030.020.010.030.030.030.040.02
    Fe2+0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.00
    Mn0.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.00
    Mg7.619.289.599.569.757.618.389.769.519.339.489.059.439.859.379.609.609.779.579.519.479.679.429.299.809.619.879.529.617.459.519.339.489.059.439.809.649.489.8610.0010.189.809.649.487.417.50
    Ca0.050.030.070.020.030.020.100.010.010.010.000.000.000.000.010.000.010.010.000.010.010.010.000.000.010.000.000.000.000.050.010.010.000.000.000.000.000.000.010.000.000.000.000.000.020.02
    Na0.000.000.060.000.010.020.040.010.010.010.000.010.030.010.030.010.030.010.000.040.000.000.010.010.060.040.000.000.000.000.010.010.000.010.030.000.010.000.000.000.000.000.010.000.000.00
    K0.000.000.020.000.010.000.030.010.000.010.010.020.000.010.010.010.000.010.010.010.000.000.000.010.030.010.000.010.000.040.000.010.010.020.000.010.000.010.000.010.000.010.000.010.060.01
    F0.830.320.570.110.240.340.990.270.230.600.190.270.460.190.040.000.190.120.000.230.610.420.380.490.000.570.270.190.231.930.230.600.190.270.460.420.230.560.190.080.000.420.230.560.910.53
    Cl0.010.010.010.010.000.000.030.000.000.000.010.000.010.000.000.010.000.010.000.010.000.000.000.010.020.010.000.000.000.010.000.000.010.000.010.010.000.020.000.000.000.010.000.020.020.01
    Fe/(Fe+Mg)0.000.000.000.000.000.000.000.000.000.000.010.010.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.000.010.000.000.010.010.000.000.000.000.000.000.000.000.000.000.010.00
    T(°C)*--136.8187.5145.1--266.5248.6203.2263.5244.7280.5218.6154.7229.4252.1251.8145.1216.7292.9250.7283.4253.9233.3245.1234.1168.0253.7-248.6203.2263.5244.7280.5220.3191.4248.7222.8215.0223.8220.3191.4248.7--

    * data calculated by Cathelineau and Nieva (1995).


    Table 5 . Summary of microthermometric data of fluid inclusions from the Pailou deposit.

    GroupsSample No.Inclusion typeNumberof analysisSize(㎛)Th(℃)Tmice(℃)Salinity (wt%NaCl)P(bar)
    Pure Mgs19PL-6Liquid-rich21< 8145~239-12~-23.4~16.04.1~32.0
    19PL-6-2Liquid-rich8< 8140~243-9~-35.0~12.810.0~32.5
    19PL-10aLiquid-rich8< 4130~161-5~-23.4~7.92.6~3.3
    19PL-13Liquid-rich14< 4134~213-20~-57.9~22.32.7~17.0
    19PL-13-1Liquid-rich7< 4173~220-12~-912.8~16.07.5~13.6
    Chl+Mgs19PL-6-1Liquid-rich12< 8150~220-18~-11.7~21.04.4~13.5
    19PL-11Liquid-rich8< 6143~171-6~-11.7~9.23.9~7.6
    Chl+Tlc+Mgs19PL-2-1, 2-2Liquid-rich9< 10163~224-12~-46.4~16.011.0~23.6
    19PL-8aLiquid-rich32< 11121~250-20~-23.4~22.42.0~10.6

    Table 6 . Comparison of deposit characteristics between the Dashiqiao and Dancheon magnesite deposits.

    Dashiqiao (China)Dancheon (North Korea)
    Host rock• dolostone• dolostone
    Formation• Dashiqiao Formation (Proterozoic)• Bukdaecheon Series (Proterozoic)
    Orebody• white, gray, pinkish color
    • sparry texture
    • residual dolomite
    • talc-chlorite vein
    • dolomite, calcite vein
    • pinkish, white, gray color
    • sparry texture
    • residual dolomite
    • talc-chlorite vein
    Minerals• major magnesite, talc
    • minor chlorite, apatite, quartz
    • major magnesite
    • minor talc, chlorite, apatite, quartz, tremolite
    Chlorite composition• clinochlore, penninite, talc-chlorite• mostly clinochlore
    Homogenization temperature and salinity• 121~250 ℃ (avg. 175 ℃)
    • 1.7~22.4 wt% NaCl (avg. 10.2 wt% NaCl)
    • 112~272 ℃ (avg. 187 ℃)
    • 0.5~34.1 wt% NaCl (avg. 14.5 wt% NaCl)
    Chlorite geothermometer• 137~293 ℃ (avg. 228 ℃)• 159~307 ℃ (avg. 212 ℃)
    Pressure• < 3.16 kb• < 3.62 kb
    Oxygen-carbon isotope• δ18O: magnesite (9.2~16.9 ‰), dolomite (16.4~19.5 ‰)
    • δ13C: magnesite (-1.3~0.9 ‰), dolomiticmarble (0.6~1.4 ‰)
    • δ18O: magnesite (8.7~11.4 ‰), dolomite (19.0~23.0 ‰)
    • δ13C: magnesite (0.1~0.8 ‰), dolomite (-0.95~1.0 ‰)
    ReferencesThis study, Tang et al. (2013)Lee et al. (2021)

    KSEEG
    Apr 30, 2024 Vol.57 No.2, pp. 107~280

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download