Research Paper

Split Viewer

Econ. Environ. Geol. 2021; 54(1): 21-33

Published online February 28, 2021

https://doi.org/10.9719/EEG.2021.54.1.21

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea

Jihye Yang, Danu Kim, Yuna Oh, Soyoung Jeon, Minhee Lee*

Department of Earth Environmental Sciences, Pukyong National University

Correspondence to : heelee@pknu.ac.kr

Received: January 7, 2021; Revised: January 9, 2021; Accepted: January 12, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site.
From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

Keywords stabilization, soil contamination, soil remediation, amendment, mine drainage treatment sludge, steel making slag

국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명

양지혜 · 김단우 · 오유나 · 전소영 · 이민희*

부경대학교 지구환경과학과

요 약

국내 오염시나리오별 안정화 효율과 경제성이 뛰어난 안정화제를 선택하여 적용할 수 있도록, 국내외에서 연구된 대표적인 안정화제를 대상으로 국내 중금속 오염 현장 부지 특성별 중금속 안정화 효율이 높은 안정화제 순위를 결정하였다. 총 5종류의 오염시나리오를 가정하여 각각 해당되는 국내 오염부지 토양을 확보하였다. 국내외 활용도와 안정화 효율 연구 결과, 오염특성별 부지 시나리오에 적용 가능성 등을 고려하여 기존에 연구되었던 안정화제 13가지를 선정하였다. 선정한 오염 토양과 안정화제의 오염 가능성과 현장 적용 가능성을 평가하기 위하여 XRD/XRF 분석, 독성용출시험과 인공강우용출시험 등을 실시하였다. 부지 오염시나리오를 대표하는 5종류 오염 토양에 대하여 선정된 13종의 안정화제에 의한 비소, 수은, 납, 6가 크롬, 아연, 니켈, 구리 등 총 8종의 중금속(반금속인 비소 포함) 용출 저감 효과를 규명하는 용출 배치실험을 수행하였다.
총 5개 오염 토양에 대하여 13개 안정화제 주입 비율 3%, 5%, 7% 적용 시, 각 중금속(비소 포함)에 대한 중금속 용출 저감 효율이 안정화제를 주입하지 않은 토양 대비 20% 이상을 나타내는 안정화제 중에서 저감 효율이 높은 순위부터 5개 안정화제(Top 5)를 선택하였다. 각 안정화제에 대하여 안정화제 주입비율, 중금속 종류, 부지별 조건에 따라 수행된 배치실험 결과에 대하여 Top 5에 해당하는 총 횟수를 합산하여, 다양한 국내 부지 오염시나리오에 적용할 수 있는 안정화제의 순위를 결정하였다. 5개 오염토양에 대하여 8개 중금속 항목별 용출 저감 효율이 20% 이상인 경우, 가장 안정화 효율이 높은 순위는 광산배수처리 슬러지(mine drainage treatment sludge), 산화철, 생석회, 소석회-석회석, 황화철, 바이오차 순으로 나타났다. 위 안정화제들에 대하여 안정화제의 효율대비 단가를 산정한 결과, 광산배수처리 슬러지, 석회석, 제강슬래그(비소의 경우), 생석회, 소석회 순으로 경제성이 높게 나타나 현장 적용성이 뛰어난 것으로 밝혀졌다.

주요어 토양 안정화, 토양 오염, 토양 정화, 안정화제, 광산배수 슬러지, 제강슬래그

Article

Research Paper

Econ. Environ. Geol. 2021; 54(1): 21-33

Published online February 28, 2021 https://doi.org/10.9719/EEG.2021.54.1.21

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Evaluation of Stabilization Capacity for Typical Amendments based on the Scenario of Heavy Metal Contaminated Sites in Korea

Jihye Yang, Danu Kim, Yuna Oh, Soyoung Jeon, Minhee Lee*

Department of Earth Environmental Sciences, Pukyong National University

Correspondence to:heelee@pknu.ac.kr

Received: January 7, 2021; Revised: January 9, 2021; Accepted: January 12, 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.

Abstract

The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site.
From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.

Keywords stabilization, soil contamination, soil remediation, amendment, mine drainage treatment sludge, steel making slag

국내 중금속 부지오염시나리오를 고려한 안정화제의 중금속 안정화 효율 규명

양지혜 · 김단우 · 오유나 · 전소영 · 이민희*

부경대학교 지구환경과학과

Received: January 7, 2021; Revised: January 9, 2021; Accepted: January 12, 2021

요 약

국내 오염시나리오별 안정화 효율과 경제성이 뛰어난 안정화제를 선택하여 적용할 수 있도록, 국내외에서 연구된 대표적인 안정화제를 대상으로 국내 중금속 오염 현장 부지 특성별 중금속 안정화 효율이 높은 안정화제 순위를 결정하였다. 총 5종류의 오염시나리오를 가정하여 각각 해당되는 국내 오염부지 토양을 확보하였다. 국내외 활용도와 안정화 효율 연구 결과, 오염특성별 부지 시나리오에 적용 가능성 등을 고려하여 기존에 연구되었던 안정화제 13가지를 선정하였다. 선정한 오염 토양과 안정화제의 오염 가능성과 현장 적용 가능성을 평가하기 위하여 XRD/XRF 분석, 독성용출시험과 인공강우용출시험 등을 실시하였다. 부지 오염시나리오를 대표하는 5종류 오염 토양에 대하여 선정된 13종의 안정화제에 의한 비소, 수은, 납, 6가 크롬, 아연, 니켈, 구리 등 총 8종의 중금속(반금속인 비소 포함) 용출 저감 효과를 규명하는 용출 배치실험을 수행하였다.
총 5개 오염 토양에 대하여 13개 안정화제 주입 비율 3%, 5%, 7% 적용 시, 각 중금속(비소 포함)에 대한 중금속 용출 저감 효율이 안정화제를 주입하지 않은 토양 대비 20% 이상을 나타내는 안정화제 중에서 저감 효율이 높은 순위부터 5개 안정화제(Top 5)를 선택하였다. 각 안정화제에 대하여 안정화제 주입비율, 중금속 종류, 부지별 조건에 따라 수행된 배치실험 결과에 대하여 Top 5에 해당하는 총 횟수를 합산하여, 다양한 국내 부지 오염시나리오에 적용할 수 있는 안정화제의 순위를 결정하였다. 5개 오염토양에 대하여 8개 중금속 항목별 용출 저감 효율이 20% 이상인 경우, 가장 안정화 효율이 높은 순위는 광산배수처리 슬러지(mine drainage treatment sludge), 산화철, 생석회, 소석회-석회석, 황화철, 바이오차 순으로 나타났다. 위 안정화제들에 대하여 안정화제의 효율대비 단가를 산정한 결과, 광산배수처리 슬러지, 석회석, 제강슬래그(비소의 경우), 생석회, 소석회 순으로 경제성이 높게 나타나 현장 적용성이 뛰어난 것으로 밝혀졌다.

주요어 토양 안정화, 토양 오염, 토양 정화, 안정화제, 광산배수 슬러지, 제강슬래그

    Fig 1.

    Figure 1.The soil sampling sites for the study (S1 – S5 soils).
    Economic and Environmental Geology 2021; 54: 21-33https://doi.org/10.9719/EEG.2021.54.1.21

    Fig 2.

    Figure 2.Stabilization efficiency of three amendments for S2 soil.
    Economic and Environmental Geology 2021; 54: 21-33https://doi.org/10.9719/EEG.2021.54.1.21

    Fig 3.

    Figure 3.Hg stabilization efficiency of 13 amendments for S2 soil.
    Economic and Environmental Geology 2021; 54: 21-33https://doi.org/10.9719/EEG.2021.54.1.21

    Fig 4.

    Figure 4.Evaluation of the stabilization efficiency for amendments based on the color index at two different stabilization time.
    Economic and Environmental Geology 2021; 54: 21-33https://doi.org/10.9719/EEG.2021.54.1.21

    Table 1 . Soil samples based on 5 different pollution scenarios.

    Type of pollution scenarioPollution SourceMain targetSoil name
    Abandoned mine siteOxidation of sulfide mineral (including AMD)As and HgFarm land soil (S1)
    As and HgMine tailing storage site soil (S2)
    Residential area (required In-situ cleanup process)Heavy metal wasteHeavy metals such as Pb, Zn and NiIllegal metal and construction waste storage site soil (S3)
    Steep slope site (required In-situ cleanup process)Artillery shell fragmentsHeavy metals such as Cu and ZnMilitary bomb test site soil (S4)
    Multi-contaminated siteHeavy metal and oil wasteTPH + heavy metals (Pb, Zn, Cu and Cr+6)Waste storage site soil (S5)

    Table 2 . The evaluation criteria used in the ranking for amendments.


    Evaluation gradeEvaluation criteriaColor index
    Excellent● Three or more cases, showing the extraction lowering efficiency ≥ 50%Green
    Good●One or two cases, showing the extraction lowering efficiency ≥ 50% + More than one case, showing the extraction lowering efficiency 20 – 50%Blue
    ● Three or more cases, showing the extraction lowering efficiency 20 – 50%
    Intermediate●One case, showing the extraction lowering efficiency ≥ 50% + More than one case, showing the extraction lowering efficiency 0 - 20%Yellow
    ●More than one case, showing the extraction lowering efficiency 20 – 50% + More than one case, showing the extraction lowering efficiency 0 – 20%
    ● Three or more cases, showing the extraction lowering efficiency 0 - 20%
    Weak●Other cases (showing no distinct extraction lowering efficiency)Oringe
    Exclusion for evaluation●When the concentration of extracted water for the initial soil (without amendment) was less than 0.005 mg/LWhite

    Table 3 . The pH and extraction results for 5 soil samples.

    Soil typepHType of extractionConcentration of extracted solution (Unit: mg/L or mg/kg)
    CdCuPbNiZnAsHgCr+6
    S18.01TCLP0.0000.0000.0000.0000.8750.3180.0760.000
    SPLP0.0000.0040.0000.0000.0000.1470.0140.000
    Aqua regia extraction(1)57.8616.73337.7512.57245.84136.284.72.520
    S28.06TCLP0.0330.0180.0000.0381.9731.5500.1440.000
    SPLP0.0240.0060.0870.0030.1171.2510.0630.000
    Aqua regia extraction(1)3.5032.9739.6311.00133.202225.2827.32.084
    S37.26TCLP0.2453.9730.8650.18073.3200.025-0.000
    SPLP0.0000.1120.1530.8270.5240.009-0.000
    Aqua regia extraction(1)36.631560.111606.06119.474796.8775.01-4.476
    S47.91TCLP0.0281.6172.1450.0087.1460.000-0.000
    SPLP0.0000.0780.0090.0001.0830.000-0.000
    Aqua regia extraction(1)3.410451.30076.9206.580702.9606.330-1.088
    S56.15TCLP0.8253.34528.9430.19526.1100.030-0.000
    SPLP0.0000.0080.0090.0000.0280.000-0.000
    Aqua regia extraction(1)45.12366.051573.2657.442428.745.24-8.364
    Tolerance limit of waste extraction process (TLWEP)0.3003.0003.000--1.5000.0051.500

    * Unit of (1): mg/kg; Red color: ≥ TLWEP.

    * Red: ≥ soil pollution warning limit of 3 area; yellow: ≥ soil pollution warning limit of 2 area; green: ≥ soil pollution warning limit of 1 area.

    * -: no data.


    Table 4 . Chemical compositions of amendments from XRF analysis.

    CompoundWeight %
    Biochar1Biochar2Steel making slag1Steel making slag2CMDSMMDSCaOCa(OH)2Calcite
    SiO288.226.9213.0629.748.677.995.261.791.88
    Al2O310.322.0112.1310.039.742.990.82
    Fe2O34.6626.5924.2738.7930.840.850.61
    CaO1.5622.5644.6519.3134.5727.2884.3384.7796.65
    MgO0.915.585.844.285.17.915.611.08
    MnO0.130.273.086.680.971.12
    CuO2.34
    ZnO2.12
    Na2O4.37
    K2O4.957.220.170.230.17
    P2O51.353.982.420.07
    TiO20.510.590.91
    V2O50.56
    Cr2O50.351.87
    SO32.7713.590.850.641.8610.650.670.741.47
    Cl
    Total99.8799.9810010099.9999.9910099.98100

    Table 5 . Major minerals of amendment resulted from XRD analysis.


    AmendmentMajor mineralsFormulaProperties
    Iron sulfateRozeniteFeSO4•4(H2O)The secondary mineral originated from melanterite (FeSO4•7(H2O))
    Biochar1CristobaliteSiO2Amorphous organic material with small dose of cristobalite and calcite
    CalciteCaCO3
    Organic material-
    Biochar2DolomiteCaMg(CO3)2Amorphous organic material with dolomite, calcite and small dose of quartz
    CalciteCaCO3
    QuartzSiO2
    Organic material-
    Steel making slag1WuestiteFeOAmorphous silicate minerals with wuestite and brownmillerite
    BrawonmilleriteCa2(Al,Fe)2O5
    Steel making slag2DolomiteCaMg(CO3)2Amorphous silicate minerals with dolomite and pyroxene
    PyroxeneCaFeSi2O6
    Coal mine drainage sludge (CMDS)AragoniteCaCO3Aragonite, calcite and quartz with amorphous iron bearing silicate minerals
    CalciteCaCO3
    QuartzSiO2
    Metal mine drainage sludge (MMDS)CalciteCaCO3Calcite and gypsum with amorphous iron bearing silicate minerals
    GypusumCaSO4•2(H2O)
    Calcium oxideLimeCaOLime with small dose of portlandite and quartz
    PortlanditeCa(OH)2
    QuartzSiO2
    Calcium hydroxidePortlanditeCa(OH)2Portlandite with calcite
    CalciteCaCO3
    limestoneCalciteCaCO3Calcite with small dose of quartz
    QuartzSiO2

    Table 6 . Extraction results for amendments.

    AmendmentpHType of extractionConcentration of extracted solution (Unit: mg/L)
    CdCuPbNiZnAsHgCr+6
    Iron sulfide3.33TCLP0.0000.0000.0370.0000.0190.0000.0000.000
    SPLP0.0000.0000.6230.0000.1240.0000.0000.000
    Biochar19.85TCLP0.0000.0000.0000.0000.5690.0000.0000.000
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Biochar27.34TCLP0.0470.0520.0730.0201.8590.0180.0000.000
    SPLP0.0050.0330.0340.0090.1870.0140.0000.118
    Steel making slag19.28TCLP0.0000.0000.0000.0000.0000.0080.0000.000
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Steel making slag28.31TCLP0.0000.0000.0000.0000.0000.0000.0000.087
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Coal mine drainage sludge (CMDS)8.65TCLP0.0000.0000.0000.0700.0120.0000.0000.000
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Metal mine drainage sludge (MMDS)9.39TCLP0.0000.0000.0000.0000.0710.0000.0000.000
    SPLP0.0000.0140.0000.0000.0000.0000.0000.000
    Calcium oxide12.63TCLP0.0000.0000.0000.0000.0000.0000.0000.000
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Calciumhydroxide12.46TCLP0.0000.0000.0000.0000.0000.0000.0000.000
    SPLP0.0000.0000.0000.0000.0000.0100.0000.000
    Limestone8.81TCLP0.0000.0000.0000.0000.0190.0000.0000.000
    SPLP0.0000.0000.0000.0000.0000.0000.0000.000
    Tolerance limit of waste extraction process (TLWEP)0.3003.0003.000--1.5000.0051.500

    Table 7 . The pH change of soil after the addition of amendment (0 – 7%).

    Amendment%pHAmendment%pH
    S3 soilS2 soilS1 soilS4 soilS3 soilS2 soilS1 soilS4 soil
    Iron oxide08.06.97.87.1Steel making slag108.07.17.96.6
    18.17.07.97.318.38.69.08.3
    38.17.17.87.139.810.410.39.3
    58.17.18.06.559.910.711.010.6
    78.07.27.76.8710.211.311.010.6
    Manganese oxide08.16.97.87.2CMDS08.37.37.66.4
    18.27.57.97.518.28.27.98.0
    38.17.37.97.338.28.38.18.2
    58.17.67.97.558.28.48.28.3
    78.27.57.77.278.48.38.28.4
    Iron sulfide08.17.08.07.3Calcium oxide08.27.17.86.4
    18.16.97.87.3111.012.012.012.2
    38.16.37.67.0312.412.712.612.7
    58.06.67.45.2512.712.711.812.8
    77.95.27.35.6712.712.711.712.8
    Iron sulfate08.06.97.97.3Calcium hydroxide08.27.47.56.4
    17.44.25.04.1111.011.511.412.1
    35.93.84.13.7312.411.912.112.7
    54.43.73.93.4512.612.012.312.8
    74.53.63.83.3712.712.512.112.8
    Zero iron08.17.17.86.7Limestone08.37.77.96.4
    18.07.27.96.718.38.47.97.7
    38.17.37.86.938.38.28.47.9
    58.07.67.97.658.38.37.97.8
    78.17.77.87.478.38.37.97.9
    Biochar108.37.37.86.4MMDS08.27.57.96.2
    18.17.57.96.318.28.28.17.9
    38.17.88.17.338.17.78.37.6
    58.18.08.27.558.37.78.77.8
    78.18.08.27.778.57.69.17.9
    Steel making slag208.17.17.96.9
    18.17.78.17.2
    38.17.68.27.5
    58.18.08.27.7
    78.18.18.27.7

    Table 8 . Ranking of amendments for heavy metals (metalloid) based on the stabilization efficiency.

    3% addition5% addition7% additionTotal case numberRank
    AmendmentCases ranked in the top 5AmendmentCases ranked in the top 5AmendmentCases ranked in the top 5
    Iron oxide6Iron oxide10Iron oxide13293
    Manganese oxide3Manganese oxide1Manganese oxide15
    Iron sulfide5Iron sulfide6Iron sulfide920
    Iron sulfate4Iron sulfate4Iron sulfate311
    Zero iron1Zero iron1Zero iron13
    Biochar8Biochar5Biochar518
    Steel making slag10Steel making slag15Steel making slag138
    Steel making slag20Steel making slag22Steel making slag246
    CMDS25CMDS20CMDS14591
    Calcium oxide9Calcium oxide9Calcium oxide6244
    Calcium hydroxide9Calcium hydroxide8Calcium hydroxide6235
    Limestone9Limestone9Limestone5235
    MMDS19MMDS7MMDS6322

    Table 9 . The analysis for the economic efficiency of amendments.

    AmendmentS3 soilS2 soil
    A. Manufacturing (or purchasing cost)/kg (won)B. The average of stabilization efficiency for Zn and PbThe ratio A/B (won)A. Manufacturing (or purchasing cost)/kg (won)B. The average of stabilization efficiency for AsThe ratio A/B (won)
    Iron oxide8,50087%9,9708,50093%9,140
    CMDS10184%12010199%102
    MMDS10188%11510199%102
    Limestone1478%181461%23
    Zero iron92,10022%418,63692,10028%328,929
    Iron sulfate3,240--3,240100%3,240
    Steel making slag178--7833%236
    Biochar12,14377%27832,143--
    Calcium oxide13037%35113097%134
    Calcium hydroxide27057%47427097%278

    KSEEG
    Feb 28, 2025 Vol.58 No.1, pp. 1~97

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download