Econ. Environ. Geol. 2021; 54(1): 21-33
Published online February 28, 2021
https://doi.org/10.9719/EEG.2021.54.1.21
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : heelee@pknu.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site.
From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.
Keywords stabilization, soil contamination, soil remediation, amendment, mine drainage treatment sludge, steel making slag
양지혜 · 김단우 · 오유나 · 전소영 · 이민희*
부경대학교 지구환경과학과
국내 오염시나리오별 안정화 효율과 경제성이 뛰어난 안정화제를 선택하여 적용할 수 있도록, 국내외에서 연구된 대표적인 안정화제를 대상으로 국내 중금속 오염 현장 부지 특성별 중금속 안정화 효율이 높은 안정화제 순위를 결정하였다. 총 5종류의 오염시나리오를 가정하여 각각 해당되는 국내 오염부지 토양을 확보하였다. 국내외 활용도와 안정화 효율 연구 결과, 오염특성별 부지 시나리오에 적용 가능성 등을 고려하여 기존에 연구되었던 안정화제 13가지를 선정하였다. 선정한 오염 토양과 안정화제의 오염 가능성과 현장 적용 가능성을 평가하기 위하여 XRD/XRF 분석, 독성용출시험과 인공강우용출시험 등을 실시하였다. 부지 오염시나리오를 대표하는 5종류 오염 토양에 대하여 선정된 13종의 안정화제에 의한 비소, 수은, 납, 6가 크롬, 아연, 니켈, 구리 등 총 8종의 중금속(반금속인 비소 포함) 용출 저감 효과를 규명하는 용출 배치실험을 수행하였다.
총 5개 오염 토양에 대하여 13개 안정화제 주입 비율 3%, 5%, 7% 적용 시, 각 중금속(비소 포함)에 대한 중금속 용출 저감 효율이 안정화제를 주입하지 않은 토양 대비 20% 이상을 나타내는 안정화제 중에서 저감 효율이 높은 순위부터 5개 안정화제(Top 5)를 선택하였다. 각 안정화제에 대하여 안정화제 주입비율, 중금속 종류, 부지별 조건에 따라 수행된 배치실험 결과에 대하여 Top 5에 해당하는 총 횟수를 합산하여, 다양한 국내 부지 오염시나리오에 적용할 수 있는 안정화제의 순위를 결정하였다. 5개 오염토양에 대하여 8개 중금속 항목별 용출 저감 효율이 20% 이상인 경우, 가장 안정화 효율이 높은 순위는 광산배수처리 슬러지(mine drainage treatment sludge), 산화철, 생석회, 소석회-석회석, 황화철, 바이오차 순으로 나타났다. 위 안정화제들에 대하여 안정화제의 효율대비 단가를 산정한 결과, 광산배수처리 슬러지, 석회석, 제강슬래그(비소의 경우), 생석회, 소석회 순으로 경제성이 높게 나타나 현장 적용성이 뛰어난 것으로 밝혀졌다.
주요어 토양 안정화, 토양 오염, 토양 정화, 안정화제, 광산배수 슬러지, 제강슬래그
Econ. Environ. Geol. 2021; 54(1): 21-33
Published online February 28, 2021 https://doi.org/10.9719/EEG.2021.54.1.21
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Jihye Yang, Danu Kim, Yuna Oh, Soyoung Jeon, Minhee Lee*
Department of Earth Environmental Sciences, Pukyong National University
Correspondence to:heelee@pknu.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
The purpose of this study is to determine the order of priority for the use of amendments, matching the optimal amendment to the specific site in Korea. This decision-making process must prioritize the stabilization and economic efficiency of amendment for heavy metals and metalloid based on domestic site contamination scenarios. For this study, total 5 domestic heavy metal contaminated sites were selected based on different pollution scenarios and 13 amendments, which were previously studied as the soil stabilizer. Batch extraction experiments were performed to quantify the stabilization efficiency for 8 heavy metals (including As and Hg) for 5 soil samples, representing 5 different pollution scenarios. For each amendment, the analyses using XRD and XRF to identify their properties, the toxicity characteristics leaching procedure (TCLP) test, and the synthetic precipitation leaching procedure (SPLP) test were also conducted to evaluate the leaching safety in applied site.
From results of batch experiments, the amendments showing > 20% extraction lowering efficiency for each heavy metal (metalloid) was selected and the top 5 ranked amendments were determined at different amount of amendment and on different extraction time conditions. For each amendment, the total number of times ranked in the top 5 was counted, prioritizing the feasible amendment for specific domestic contaminated sites in Korea. Mine drainage treatment sludge, iron oxide, calcium oxide, calcium hydroxide, calcite, iron sulfide, biochar showed high extraction decreasing efficiency for heavy metals in descending order. When the economic efficiency for these amendments was analyzed, mine drainage treatment sludge, limestone, steel making slag, calcium oxide, calcium hydroxide were determined as the priority amendment for the Korean field application in descending order.
Keywords stabilization, soil contamination, soil remediation, amendment, mine drainage treatment sludge, steel making slag
양지혜 · 김단우 · 오유나 · 전소영 · 이민희*
부경대학교 지구환경과학과
국내 오염시나리오별 안정화 효율과 경제성이 뛰어난 안정화제를 선택하여 적용할 수 있도록, 국내외에서 연구된 대표적인 안정화제를 대상으로 국내 중금속 오염 현장 부지 특성별 중금속 안정화 효율이 높은 안정화제 순위를 결정하였다. 총 5종류의 오염시나리오를 가정하여 각각 해당되는 국내 오염부지 토양을 확보하였다. 국내외 활용도와 안정화 효율 연구 결과, 오염특성별 부지 시나리오에 적용 가능성 등을 고려하여 기존에 연구되었던 안정화제 13가지를 선정하였다. 선정한 오염 토양과 안정화제의 오염 가능성과 현장 적용 가능성을 평가하기 위하여 XRD/XRF 분석, 독성용출시험과 인공강우용출시험 등을 실시하였다. 부지 오염시나리오를 대표하는 5종류 오염 토양에 대하여 선정된 13종의 안정화제에 의한 비소, 수은, 납, 6가 크롬, 아연, 니켈, 구리 등 총 8종의 중금속(반금속인 비소 포함) 용출 저감 효과를 규명하는 용출 배치실험을 수행하였다.
총 5개 오염 토양에 대하여 13개 안정화제 주입 비율 3%, 5%, 7% 적용 시, 각 중금속(비소 포함)에 대한 중금속 용출 저감 효율이 안정화제를 주입하지 않은 토양 대비 20% 이상을 나타내는 안정화제 중에서 저감 효율이 높은 순위부터 5개 안정화제(Top 5)를 선택하였다. 각 안정화제에 대하여 안정화제 주입비율, 중금속 종류, 부지별 조건에 따라 수행된 배치실험 결과에 대하여 Top 5에 해당하는 총 횟수를 합산하여, 다양한 국내 부지 오염시나리오에 적용할 수 있는 안정화제의 순위를 결정하였다. 5개 오염토양에 대하여 8개 중금속 항목별 용출 저감 효율이 20% 이상인 경우, 가장 안정화 효율이 높은 순위는 광산배수처리 슬러지(mine drainage treatment sludge), 산화철, 생석회, 소석회-석회석, 황화철, 바이오차 순으로 나타났다. 위 안정화제들에 대하여 안정화제의 효율대비 단가를 산정한 결과, 광산배수처리 슬러지, 석회석, 제강슬래그(비소의 경우), 생석회, 소석회 순으로 경제성이 높게 나타나 현장 적용성이 뛰어난 것으로 밝혀졌다.
주요어 토양 안정화, 토양 오염, 토양 정화, 안정화제, 광산배수 슬러지, 제강슬래그
Table 1 . Soil samples based on 5 different pollution scenarios.
Type of pollution scenario | Pollution Source | Main target | Soil name |
---|---|---|---|
Abandoned mine site | Oxidation of sulfide mineral (including AMD) | As and Hg | Farm land soil (S1) |
As and Hg | Mine tailing storage site soil (S2) | ||
Residential area (required In-situ cleanup process) | Heavy metal waste | Heavy metals such as Pb, Zn and Ni | Illegal metal and construction waste storage site soil (S3) |
Steep slope site (required In-situ cleanup process) | Artillery shell fragments | Heavy metals such as Cu and Zn | Military bomb test site soil (S4) |
Multi-contaminated site | Heavy metal and oil waste | TPH + heavy metals (Pb, Zn, Cu and Cr+6) | Waste storage site soil (S5) |
Table 2 . The evaluation criteria used in the ranking for amendments.
Evaluation grade | Evaluation criteria | Color index |
---|---|---|
Excellent | ● Three or more cases, showing the extraction lowering efficiency ≥ 50% | Green |
Good | ●One or two cases, showing the extraction lowering efficiency ≥ 50% + More than one case, showing the extraction lowering efficiency 20 – 50% | Blue |
● Three or more cases, showing the extraction lowering efficiency 20 – 50% | ||
Intermediate | ●One case, showing the extraction lowering efficiency ≥ 50% + More than one case, showing the extraction lowering efficiency 0 - 20% | Yellow |
●More than one case, showing the extraction lowering efficiency 20 – 50% + More than one case, showing the extraction lowering efficiency 0 – 20% | ||
● Three or more cases, showing the extraction lowering efficiency 0 - 20% | ||
Weak | ●Other cases (showing no distinct extraction lowering efficiency) | Oringe |
Exclusion for evaluation | ●When the concentration of extracted water for the initial soil (without amendment) was less than 0.005 mg/L | White |
Table 3 . The pH and extraction results for 5 soil samples.
Soil type | pH | Type of extraction | Concentration of extracted solution (Unit: mg/L or mg/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Cu | Pb | Ni | Zn | As | Hg | Cr+6 | |||
S1 | 8.01 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.875 | 0.318 | 0.076 | 0.000 |
SPLP | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.147 | 0.014 | 0.000 | ||
Aqua regia extraction(1) | 57.86 | 16.73 | 337.75 | 12.57 | 245.84 | 136.28 | 4.7 | 2.520 | ||
S2 | 8.06 | TCLP | 0.033 | 0.018 | 0.000 | 0.038 | 1.973 | 1.550 | 0.144 | 0.000 |
SPLP | 0.024 | 0.006 | 0.087 | 0.003 | 0.117 | 1.251 | 0.063 | 0.000 | ||
Aqua regia extraction(1) | 3.50 | 32.97 | 39.63 | 11.00 | 133.20 | 2225.28 | 27.3 | 2.084 | ||
S3 | 7.26 | TCLP | 0.245 | 3.973 | 0.865 | 0.180 | 73.320 | 0.025 | - | 0.000 |
SPLP | 0.000 | 0.112 | 0.153 | 0.827 | 0.524 | 0.009 | - | 0.000 | ||
Aqua regia extraction(1) | 36.63 | 1560.11 | 1606.06 | 119.47 | 4796.87 | 75.01 | - | 4.476 | ||
S4 | 7.91 | TCLP | 0.028 | 1.617 | 2.145 | 0.008 | 7.146 | 0.000 | - | 0.000 |
SPLP | 0.000 | 0.078 | 0.009 | 0.000 | 1.083 | 0.000 | - | 0.000 | ||
Aqua regia extraction(1) | 3.410 | 451.300 | 76.920 | 6.580 | 702.960 | 6.330 | - | 1.088 | ||
S5 | 6.15 | TCLP | 0.825 | 3.345 | 28.943 | 0.195 | 26.110 | 0.030 | - | 0.000 |
SPLP | 0.000 | 0.008 | 0.009 | 0.000 | 0.028 | 0.000 | - | 0.000 | ||
Aqua regia extraction(1) | 45.12 | 366.05 | 1573.26 | 57.44 | 2428.74 | 5.24 | - | 8.364 | ||
Tolerance limit of waste extraction process (TLWEP) | 0.300 | 3.000 | 3.000 | - | - | 1.500 | 0.005 | 1.500 |
* Unit of (1): mg/kg; Red color: ≥ TLWEP.
* Red: ≥ soil pollution warning limit of 3 area; yellow: ≥ soil pollution warning limit of 2 area; green: ≥ soil pollution warning limit of 1 area.
* -: no data.
Table 4 . Chemical compositions of amendments from XRF analysis.
Compound | Weight % | ||||||||
---|---|---|---|---|---|---|---|---|---|
Biochar1 | Biochar2 | Steel making slag1 | Steel making slag2 | CMDS | MMDS | CaO | Ca(OH)2 | Calcite | |
SiO2 | 88.2 | 26.92 | 13.06 | 29.74 | 8.67 | 7.99 | 5.26 | 1.79 | 1.88 |
Al2O3 | 10.32 | 2.01 | 12.13 | 10.03 | 9.74 | 2.99 | 0.82 | ||
Fe2O3 | 4.66 | 26.59 | 24.27 | 38.79 | 30.84 | 0.85 | 0.61 | ||
CaO | 1.56 | 22.56 | 44.65 | 19.31 | 34.57 | 27.28 | 84.33 | 84.77 | 96.65 |
MgO | 0.91 | 5.58 | 5.84 | 4.28 | 5.1 | 7.91 | 5.6 | 11.08 | |
MnO | 0.13 | 0.27 | 3.08 | 6.68 | 0.97 | 1.12 | |||
CuO | 2.34 | ||||||||
ZnO | 2.12 | ||||||||
Na2O | 4.37 | ||||||||
K2O | 4.95 | 7.22 | 0.17 | 0.23 | 0.17 | ||||
P2O5 | 1.35 | 3.98 | 2.42 | 0.07 | |||||
TiO2 | 0.51 | 0.59 | 0.91 | ||||||
V2O5 | 0.56 | ||||||||
Cr2O5 | 0.35 | 1.87 | |||||||
SO3 | 2.77 | 13.59 | 0.85 | 0.64 | 1.86 | 10.65 | 0.67 | 0.74 | 1.47 |
Cl | |||||||||
Total | 99.87 | 99.98 | 100 | 100 | 99.99 | 99.99 | 100 | 99.98 | 100 |
Table 5 . Major minerals of amendment resulted from XRD analysis.
Amendment | Major minerals | Formula | Properties |
---|---|---|---|
Iron sulfate | Rozenite | FeSO4•4(H2O) | The secondary mineral originated from melanterite (FeSO4•7(H2O)) |
Biochar1 | Cristobalite | SiO2 | Amorphous organic material with small dose of cristobalite and calcite |
Calcite | CaCO3 | ||
Organic material | - | ||
Biochar2 | Dolomite | CaMg(CO3)2 | Amorphous organic material with dolomite, calcite and small dose of quartz |
Calcite | CaCO3 | ||
Quartz | SiO2 | ||
Organic material | - | ||
Steel making slag1 | Wuestite | FeO | Amorphous silicate minerals with wuestite and brownmillerite |
Brawonmillerite | Ca2(Al,Fe)2O5 | ||
Steel making slag2 | Dolomite | CaMg(CO3)2 | Amorphous silicate minerals with dolomite and pyroxene |
Pyroxene | CaFeSi2O6 | ||
Coal mine drainage sludge (CMDS) | Aragonite | CaCO3 | Aragonite, calcite and quartz with amorphous iron bearing silicate minerals |
Calcite | CaCO3 | ||
Quartz | SiO2 | ||
Metal mine drainage sludge (MMDS) | Calcite | CaCO3 | Calcite and gypsum with amorphous iron bearing silicate minerals |
Gypusum | CaSO4•2(H2O) | ||
Calcium oxide | Lime | CaO | Lime with small dose of portlandite and quartz |
Portlandite | Ca(OH)2 | ||
Quartz | SiO2 | ||
Calcium hydroxide | Portlandite | Ca(OH)2 | Portlandite with calcite |
Calcite | CaCO3 | ||
limestone | Calcite | CaCO3 | Calcite with small dose of quartz |
Quartz | SiO2 |
Table 6 . Extraction results for amendments.
Amendment | pH | Type of extraction | Concentration of extracted solution (Unit: mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd | Cu | Pb | Ni | Zn | As | Hg | Cr+6 | |||
Iron sulfide | 3.33 | TCLP | 0.000 | 0.000 | 0.037 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.623 | 0.000 | 0.124 | 0.000 | 0.000 | 0.000 | ||
Biochar1 | 9.85 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.569 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Biochar2 | 7.34 | TCLP | 0.047 | 0.052 | 0.073 | 0.020 | 1.859 | 0.018 | 0.000 | 0.000 |
SPLP | 0.005 | 0.033 | 0.034 | 0.009 | 0.187 | 0.014 | 0.000 | 0.118 | ||
Steel making slag1 | 9.28 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.008 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Steel making slag2 | 8.31 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.087 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Coal mine drainage sludge (CMDS) | 8.65 | TCLP | 0.000 | 0.000 | 0.000 | 0.070 | 0.012 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Metal mine drainage sludge (MMDS) | 9.39 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.071 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.014 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Calcium oxide | 12.63 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Calciumhydroxide | 12.46 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.010 | 0.000 | 0.000 | ||
Limestone | 8.81 | TCLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 |
SPLP | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Tolerance limit of waste extraction process (TLWEP) | 0.300 | 3.000 | 3.000 | - | - | 1.500 | 0.005 | 1.500 |
Table 7 . The pH change of soil after the addition of amendment (0 – 7%).
Amendment | % | pH | Amendment | % | pH | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
S3 soil | S2 soil | S1 soil | S4 soil | S3 soil | S2 soil | S1 soil | S4 soil | ||||
Iron oxide | 0 | 8.0 | 6.9 | 7.8 | 7.1 | Steel making slag1 | 0 | 8.0 | 7.1 | 7.9 | 6.6 |
1 | 8.1 | 7.0 | 7.9 | 7.3 | 1 | 8.3 | 8.6 | 9.0 | 8.3 | ||
3 | 8.1 | 7.1 | 7.8 | 7.1 | 3 | 9.8 | 10.4 | 10.3 | 9.3 | ||
5 | 8.1 | 7.1 | 8.0 | 6.5 | 5 | 9.9 | 10.7 | 11.0 | 10.6 | ||
7 | 8.0 | 7.2 | 7.7 | 6.8 | 7 | 10.2 | 11.3 | 11.0 | 10.6 | ||
Manganese oxide | 0 | 8.1 | 6.9 | 7.8 | 7.2 | CMDS | 0 | 8.3 | 7.3 | 7.6 | 6.4 |
1 | 8.2 | 7.5 | 7.9 | 7.5 | 1 | 8.2 | 8.2 | 7.9 | 8.0 | ||
3 | 8.1 | 7.3 | 7.9 | 7.3 | 3 | 8.2 | 8.3 | 8.1 | 8.2 | ||
5 | 8.1 | 7.6 | 7.9 | 7.5 | 5 | 8.2 | 8.4 | 8.2 | 8.3 | ||
7 | 8.2 | 7.5 | 7.7 | 7.2 | 7 | 8.4 | 8.3 | 8.2 | 8.4 | ||
Iron sulfide | 0 | 8.1 | 7.0 | 8.0 | 7.3 | Calcium oxide | 0 | 8.2 | 7.1 | 7.8 | 6.4 |
1 | 8.1 | 6.9 | 7.8 | 7.3 | 1 | 11.0 | 12.0 | 12.0 | 12.2 | ||
3 | 8.1 | 6.3 | 7.6 | 7.0 | 3 | 12.4 | 12.7 | 12.6 | 12.7 | ||
5 | 8.0 | 6.6 | 7.4 | 5.2 | 5 | 12.7 | 12.7 | 11.8 | 12.8 | ||
7 | 7.9 | 5.2 | 7.3 | 5.6 | 7 | 12.7 | 12.7 | 11.7 | 12.8 | ||
Iron sulfate | 0 | 8.0 | 6.9 | 7.9 | 7.3 | Calcium hydroxide | 0 | 8.2 | 7.4 | 7.5 | 6.4 |
1 | 7.4 | 4.2 | 5.0 | 4.1 | 1 | 11.0 | 11.5 | 11.4 | 12.1 | ||
3 | 5.9 | 3.8 | 4.1 | 3.7 | 3 | 12.4 | 11.9 | 12.1 | 12.7 | ||
5 | 4.4 | 3.7 | 3.9 | 3.4 | 5 | 12.6 | 12.0 | 12.3 | 12.8 | ||
7 | 4.5 | 3.6 | 3.8 | 3.3 | 7 | 12.7 | 12.5 | 12.1 | 12.8 | ||
Zero iron | 0 | 8.1 | 7.1 | 7.8 | 6.7 | Limestone | 0 | 8.3 | 7.7 | 7.9 | 6.4 |
1 | 8.0 | 7.2 | 7.9 | 6.7 | 1 | 8.3 | 8.4 | 7.9 | 7.7 | ||
3 | 8.1 | 7.3 | 7.8 | 6.9 | 3 | 8.3 | 8.2 | 8.4 | 7.9 | ||
5 | 8.0 | 7.6 | 7.9 | 7.6 | 5 | 8.3 | 8.3 | 7.9 | 7.8 | ||
7 | 8.1 | 7.7 | 7.8 | 7.4 | 7 | 8.3 | 8.3 | 7.9 | 7.9 | ||
Biochar1 | 0 | 8.3 | 7.3 | 7.8 | 6.4 | MMDS | 0 | 8.2 | 7.5 | 7.9 | 6.2 |
1 | 8.1 | 7.5 | 7.9 | 6.3 | 1 | 8.2 | 8.2 | 8.1 | 7.9 | ||
3 | 8.1 | 7.8 | 8.1 | 7.3 | 3 | 8.1 | 7.7 | 8.3 | 7.6 | ||
5 | 8.1 | 8.0 | 8.2 | 7.5 | 5 | 8.3 | 7.7 | 8.7 | 7.8 | ||
7 | 8.1 | 8.0 | 8.2 | 7.7 | 7 | 8.5 | 7.6 | 9.1 | 7.9 | ||
Steel making slag2 | 0 | 8.1 | 7.1 | 7.9 | 6.9 | ||||||
1 | 8.1 | 7.7 | 8.1 | 7.2 | |||||||
3 | 8.1 | 7.6 | 8.2 | 7.5 | |||||||
5 | 8.1 | 8.0 | 8.2 | 7.7 | |||||||
7 | 8.1 | 8.1 | 8.2 | 7.7 |
Table 8 . Ranking of amendments for heavy metals (metalloid) based on the stabilization efficiency.
3% addition | 5% addition | 7% addition | Total case number | Rank | |||
---|---|---|---|---|---|---|---|
Amendment | Cases ranked in the top 5 | Amendment | Cases ranked in the top 5 | Amendment | Cases ranked in the top 5 | ||
Iron oxide | 6 | Iron oxide | 10 | Iron oxide | 13 | 29 | 3 |
Manganese oxide | 3 | Manganese oxide | 1 | Manganese oxide | 1 | 5 | |
Iron sulfide | 5 | Iron sulfide | 6 | Iron sulfide | 9 | 20 | |
Iron sulfate | 4 | Iron sulfate | 4 | Iron sulfate | 3 | 11 | |
Zero iron | 1 | Zero iron | 1 | Zero iron | 1 | 3 | |
Biochar | 8 | Biochar | 5 | Biochar | 5 | 18 | |
Steel making slag1 | 0 | Steel making slag1 | 5 | Steel making slag1 | 3 | 8 | |
Steel making slag2 | 0 | Steel making slag2 | 2 | Steel making slag2 | 4 | 6 | |
CMDS | 25 | CMDS | 20 | CMDS | 14 | 59 | 1 |
Calcium oxide | 9 | Calcium oxide | 9 | Calcium oxide | 6 | 24 | 4 |
Calcium hydroxide | 9 | Calcium hydroxide | 8 | Calcium hydroxide | 6 | 23 | 5 |
Limestone | 9 | Limestone | 9 | Limestone | 5 | 23 | 5 |
MMDS | 19 | MMDS | 7 | MMDS | 6 | 32 | 2 |
Table 9 . The analysis for the economic efficiency of amendments.
Amendment | S3 soil | S2 soil | ||||
---|---|---|---|---|---|---|
A. Manufacturing (or purchasing cost)/kg (won) | B. The average of stabilization efficiency for Zn and Pb | The ratio A/B (won) | A. Manufacturing (or purchasing cost)/kg (won) | B. The average of stabilization efficiency for As | The ratio A/B (won) | |
Iron oxide | 8,500 | 87% | 9,970 | 8,500 | 93% | 9,140 |
CMDS | 101 | 84% | 120 | 101 | 99% | 102 |
MMDS | 101 | 88% | 115 | 101 | 99% | 102 |
Limestone | 14 | 78% | 18 | 14 | 61% | 23 |
Zero iron | 92,100 | 22% | 418,636 | 92,100 | 28% | 328,929 |
Iron sulfate | 3,240 | - | - | 3,240 | 100% | 3,240 |
Steel making slag1 | 78 | - | - | 78 | 33% | 236 |
Biochar1 | 2,143 | 77% | 2783 | 2,143 | - | - |
Calcium oxide | 130 | 37% | 351 | 130 | 97% | 134 |
Calcium hydroxide | 270 | 57% | 474 | 270 | 97% | 278 |
Yikyeong Han, Minhee Lee, Sookyun Wang and Wonwoo Choi
Econ. Environ. Geol. 2019; 52(1): 1-12Minhee Lee and Jihye Jeon
Econ. Environ. Geol. 2010; 43(4): 305-314Hajung Lee and Minhee Lee
Econ. Environ. Geol. 2012; 45(3): 255-264