Econ. Environ. Geol. 2018; 51(5): 463-471
Published online October 31, 2018
https://doi.org/10.9719/EEG.2018.51.5.463
© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY
Correspondence to : sjchoi@kigam.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
In this paper, we review previous studies on the relative sea-level changes in the Yellow Sea during the Holocene to comprehensive understand the various research results. Currently, it is reported two theories : 1) the Holocene sea-level has never been higher than the present-day level; and 2) sea-level have reached highstand during mid-Holocene, followed by slow lowering to that of the present. The first theory yields a curve that is similar to a climate-change-related eustatic sea-level curve. However, in reality, most of the relative sea-level fluctuation resulted from land uplift or subsidence. The second theory yields a curve that is fairly coincident with a relative sea-level curve indicative of continental margins being located away from the ice sheets(i.e., far-field), and is considered as an effect of GIA(Glacio Isostatic Adjustment) and gravitational attraction. Based on detailed review of previous researches, we realized that they sourced the same papers, but obtained different results because they selectively chose and added the data. The data used to derive the second theory pertain to the northern Gunsan region, which is located within the western area of the Chugaryeong fault. Thus, we believe that the sea-level curve for the second theory is only representative of the area north of Gunsan, which is subject to GIA and tectonic deformation. Although the relative sea-level curve for the west coastal area is comparable to that for the far-field continental margin region, it is necessary to evaluate local tectonic activities as suggested by active seismicity in the west coastal area and the more than 400 faults currently existing in on the Korean Peninsula.
Keywords relative sea-level, eustatic sea-level, far-field area, glacio isostatic adjustment, tectonic deformation
최성자*
한국지질자원연구원 국토지질연구본부 지질연구센터
Econ. Environ. Geol. 2018; 51(5): 463-471
Published online October 31, 2018 https://doi.org/10.9719/EEG.2018.51.5.463
Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.
Sung-Ja Choi*
Korea Institute of Geoscience and Mineral Resources, 124 Gwahak-ro, Yuseong-gu, Daejeon, 34132, Korea
Correspondence to:sjchoi@kigam.re.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided original work is properly cited.
In this paper, we review previous studies on the relative sea-level changes in the Yellow Sea during the Holocene to comprehensive understand the various research results. Currently, it is reported two theories : 1) the Holocene sea-level has never been higher than the present-day level; and 2) sea-level have reached highstand during mid-Holocene, followed by slow lowering to that of the present. The first theory yields a curve that is similar to a climate-change-related eustatic sea-level curve. However, in reality, most of the relative sea-level fluctuation resulted from land uplift or subsidence. The second theory yields a curve that is fairly coincident with a relative sea-level curve indicative of continental margins being located away from the ice sheets(i.e., far-field), and is considered as an effect of GIA(Glacio Isostatic Adjustment) and gravitational attraction. Based on detailed review of previous researches, we realized that they sourced the same papers, but obtained different results because they selectively chose and added the data. The data used to derive the second theory pertain to the northern Gunsan region, which is located within the western area of the Chugaryeong fault. Thus, we believe that the sea-level curve for the second theory is only representative of the area north of Gunsan, which is subject to GIA and tectonic deformation. Although the relative sea-level curve for the west coastal area is comparable to that for the far-field continental margin region, it is necessary to evaluate local tectonic activities as suggested by active seismicity in the west coastal area and the more than 400 faults currently existing in on the Korean Peninsula.
Keywords relative sea-level, eustatic sea-level, far-field area, glacio isostatic adjustment, tectonic deformation
최성자*
한국지질자원연구원 국토지질연구본부 지질연구센터