2014; 47(4): 405-420

Published online August 31, 2014

© THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY

Assessment of Contamination and Geochemical Dispersion by Heavy Metals in Roadside Tree Leaves of Platanus occidentalis and Soils in the City of Seoul

Mi Kyung Choo1*, Jin-Soo Lee2, Jeonghoon Lee1 and Kyu-Han Kim3

1Depeartment of Science Education, Ewha Womans University, Seoul 120-750, Korea
2Mine Reclamation Corporation, Seoul 110-727, Korea
3Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea

Received: May 12, 2014; Revised: August 6, 2014; Accepted: August 18, 2014

Abstract

To investigate geochemical characteristics of soil and atmospheric environments by anthropogenic source, we have analyzed and determined heavy metal concentrations of the surface soils beneath roadside trees and leaves of Platanus occidentalis from 52 points in Seoul during autumn 2001. For comparison of the contents of heavy metal for the soil and leaf, we have analyzed heavy metal contents of the surface soils beneath roadside trees and leaves from 2 points in rural area of Yesan during the same time period. The composition of heavy metals of soils are relatively high for Cd, Co, Cr and Ni in industrial area (IA, Industrial Area) and high for Cu, Pb and Zn in heavy traffic area (HTA, Heavy Traffic Area). The heavy metal contents of rural area in Seoul are higher than those in Yesan. The differences of chemical compositions between the washed and unwashed leaves are high for Cd, Cu, Pb and Zn in the HTA. The element couples of Cd-Co, Cr-Ni and Pb-Zn for the soils had shown a good correlation and their contamination sources could be similar. The relationship for Pb-Cu and Cu-Zn showed good correlation in Platanus leaves. The relationship between soils and unwashed leaves show a good correlation for Cr, Cu, Pb and Zn but low correlation for Cd, Co, Fe, Mn and Ni. It is thought that the Cr, Cu, Pb and Zn were derived from contaminants of soils, whereas Cd, Co, Fe, Mn and Ni were originated from atmospheric source. From the spatial variations of elements for soils and leaves, Ni and Cr were dominant in the soils of IA and Cd, Cu and Zn were dominant in those of HTA. The Contamination by Cd-Pb and Cu-Zn in unwashed leaves were analyzed to show similar patterns. Using the enrichment factors (EF) of heavy metals in unwashed leaves, the EF sequences were to be Cu, Zn, Pb, Mn, Co, Ni, Cd and Cr. We identified that Cu, Zn, Pb and Mn were most problematic of environmental hazard in Seoul.

Keywords roadside tree leaves, roadside soil, heavy metals, enrichment factor, Seoul

Article

2014; 47(4): 405-420

Published online August 31, 2014

Copyright © THE KOREAN SOCIETY OF ECONOMIC AND ENVIRONMENTAL GEOLOGY.

Assessment of Contamination and Geochemical Dispersion by Heavy Metals in Roadside Tree Leaves of Platanus occidentalis and Soils in the City of Seoul

Mi Kyung Choo1*, Jin-Soo Lee2, Jeonghoon Lee1 and Kyu-Han Kim3

1Depeartment of Science Education, Ewha Womans University, Seoul 120-750, Korea
2Mine Reclamation Corporation, Seoul 110-727, Korea
3Korea Institute of Geoscience and Mineral Resources, Daejeon 305-350, Korea

Received: May 12, 2014; Revised: August 6, 2014; Accepted: August 18, 2014

Abstract

To investigate geochemical characteristics of soil and atmospheric environments by anthropogenic source, we have analyzed and determined heavy metal concentrations of the surface soils beneath roadside trees and leaves of Platanus occidentalis from 52 points in Seoul during autumn 2001. For comparison of the contents of heavy metal for the soil and leaf, we have analyzed heavy metal contents of the surface soils beneath roadside trees and leaves from 2 points in rural area of Yesan during the same time period. The composition of heavy metals of soils are relatively high for Cd, Co, Cr and Ni in industrial area (IA, Industrial Area) and high for Cu, Pb and Zn in heavy traffic area (HTA, Heavy Traffic Area). The heavy metal contents of rural area in Seoul are higher than those in Yesan. The differences of chemical compositions between the washed and unwashed leaves are high for Cd, Cu, Pb and Zn in the HTA. The element couples of Cd-Co, Cr-Ni and Pb-Zn for the soils had shown a good correlation and their contamination sources could be similar. The relationship for Pb-Cu and Cu-Zn showed good correlation in Platanus leaves. The relationship between soils and unwashed leaves show a good correlation for Cr, Cu, Pb and Zn but low correlation for Cd, Co, Fe, Mn and Ni. It is thought that the Cr, Cu, Pb and Zn were derived from contaminants of soils, whereas Cd, Co, Fe, Mn and Ni were originated from atmospheric source. From the spatial variations of elements for soils and leaves, Ni and Cr were dominant in the soils of IA and Cd, Cu and Zn were dominant in those of HTA. The Contamination by Cd-Pb and Cu-Zn in unwashed leaves were analyzed to show similar patterns. Using the enrichment factors (EF) of heavy metals in unwashed leaves, the EF sequences were to be Cu, Zn, Pb, Mn, Co, Ni, Cd and Cr. We identified that Cu, Zn, Pb and Mn were most problematic of environmental hazard in Seoul.

Keywords roadside tree leaves, roadside soil, heavy metals, enrichment factor, Seoul

    KSEEG
    Aug 30, 2024 Vol.57 No.4, pp. 353~471

    Stats or Metrics

    Share this article on

    • kakao talk
    • line

    Related articles in KSEEG

    Economic and Environmental Geology

    pISSN 1225-7281
    eISSN 2288-7962
    qr-code Download